Pumping water or producing larvae? Oscula occlusion during the reproductive period of the sponge Svenzea zeai
1 página ; 1 Figura ; Research was funded by the Spanish Government project CTM2010-17755. ; Peer reviewed
20 Ergebnisse
Sortierung:
1 página ; 1 Figura ; Research was funded by the Spanish Government project CTM2010-17755. ; Peer reviewed
BASE
11 páginas, 2 tablas, 7 figuras ; Background: Ascidians can associate with abundant and diverse consortia ofmicrobial symbionts, yet these communities remain unexamined for the majority of host ascidians and little is known about host-symbiont interactions. Methods: We coupled electron microscopy and 16S rRNA gene tag pyrosequencing to investigate the bacterial communities associated with the colonial ascidian Pseudodistoma crucigaster, a species endemic to theMediterranean Sea that has a life cycle with two phases: actively-filtering (active) and non-filtering (resting) forms. Results: Resting colonies exhibited a reduced branchial sac (feeding apparatus) and a thickened cuticle. Electron microscope images also suggested higher abundance of colonizing microorganisms on surfaces of resting colonies. Accordingly, bacterial sequences associated with environmental sources (sediment and biofilms, >99 % similarity) were detected exclusively in resting colonies. Bacterial communities of P. crucigaster colonies (active and resting) were dominated by 3 core taxa affiliated (>94 % similarity) with previously described symbiotic Alphaproteobacteria in marine invertebrates. Shifts in rare bacteria were detected when ascidians entered the resting phase, including the appearance of strictly anaerobic lineages and nitrifying bacterial guilds. Conclusions: These findings suggest that physical (thickened cuticle) and metabolic (feeding cessation) changes in host ascidians have cascading effects on associated bacteria, where modified oxygen concentrations and chemical substrates for microbial metabolism may create anaerobic microhabitats and promote colonization by environmental microorganisms. ; This research was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, the Spanish Government projects MARSYMBIOMICS CTM2013-43287-P and CHALLENGEN CTM2013-48163, and the Catalan Government grant 2014SGR-336 for Consolidated Research Groups. ; Peer reviewed
BASE
10 páginas, 6 figuras. ; The widely introduced ascidian Styela plicata is very common in the Western Mediterranean, an area that can act as a source for secondary introductions due to its high shipping activity. In order to understand the potential of this species to colonize new habitats, its reproductive features were assessed in the Western Mediterranean by means of monthly monitoring of two populations (Vilanova i la Geltru´ 41 1205300N, 1 4401100E; Blanes 41 4002900N, 2 4705600E) from January 2009 to December 2010. The reproductive activity of this species was assessed through gonad histology and a gonad index. Population size-structure was measured monthly in order to study recruitment dynamics. No clear seasonal pattern was observed, and mature gametes and recruits were present all year long. Spawning was potentially continuous, although it seemed punctuated with pulses of gamete release, particularly in spring. A prolonged reproductive period is likely to confer a competitive advantage on S. plicata in temperate seas, where most species reproduce seasonally, and may promote recurrent introductions as larvae are available for settlement on transport vectors over much of the year. ; This research was supported by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, by the Spanish Government projects CTM2010-22218 and CTM2010- 17755, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, and by a University of Barcelona APIF fellowship to MCP. ; Peer reviewed
BASE
13 páginas, 5 figuras, 1 tabla. ; Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S–23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade ("M") within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host–symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host–symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments. ; This research was supported by the Spanish Government projects CTM2010- 17755 and CTM2010-22218, the Catalan Government grant 2009SGR- 484 for Consolidated Research Groups, and by the US National Science Foundation under grant 0853089. ; Peer reviewed
BASE
10 páginas, 3 figuras, 1 tabla. ; Species distribution, abundance, and long-term survival are determined by biotic and abiotic regimes. However, little is known about the importance of these factors in species range expansion. Styela plicata is a solitary ascidian introduced all over the world by ship fouling, including salt marsh habitats, where introduced populations must tolerate high seasonal variations in temperature and salinity. To determine the seasonal stress levels in a salt marsh population of S. plicata, we quantified heat shock protein (hsp70) gene expression using quantitative real-time PCR throughout a 2-year cycle. Results showed that hsp70 expression varied over time, with higher stress levels recorded in summer and winter. Periodic conditions of high temperatures, particularly when coupled with low salinities, increased hsp70 gene expression. Mortality events observed every year around June were concurrent with sharp increases in temperature (>6°C), indicating that drastic changes in abiotic factors may overwhelm the observed stress response mechanisms. Determining the ability of introduced species to cope with stress, and the thresholds above which these mechanisms fail, is fundamental to predict the potential expansion range of introduced species and design efficient containment plans. ; This research was supported by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 (within the 7th European Community Framework Program), by the Spanish Government projects CTM2010-22218 and CTM2010-17755, and by a University of Barcelona APIF fellowship to MCP. ; Peer reviewed
BASE
11 páginas, 3 figuras, 2 tablas. ; In temperate seas, both bacterioplankton communities and invertebrate lifecycles follow a seasonal pattern. To investigate whether the bacterial community associated with the Mediterranean ascidian Didemnum fulgens exhibited similar variations, we monitored its bacterial community structure monthly for over a year using terminal restriction fragment length polymorphism and clone library analyses based on a nearly full length fragment of the 16SrRNA gene. D. fulgens harbored a bacterial consortium typical of ascidians, including numerous members of the phylum Proteobacteria, and a few members of the phyla Cyanobacteria and Acidobacteria. The overall bacterial community in D. fulgens had a distinct signature from the surrounding seawater and was stable overtime and across seasonal fluctuations in temperature. Bacterial symbionts were also observed around animal cells in the tunic of adult individuals and in the inner tunic of D. fulgens larvae by transmission electron microscopy. Our results suggest that, as seen for sponges and corals, some species of ascidians host stable and unique bacterial communities that are at least partially inherited by their progeny by vertical transmission. ; This research was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG277038 within the 7th European Community Framework Program, the Spanish Government projects: MARSYMBIOMICSC TM2013-43287- P and CHALLENGENCTM 2013-48163; and the Catalan Government grant 2014SGR-336 for Consolidated Research Groups. ; Peer reviewed
BASE
12 páginas, 8 figuras. ; Relatively little is known about the life cycles of ascidians in temperate seas. Here, we investigated the biological cycle of the colonial ascidian Didemnum fulgens, a dominant species in some shallow localities of the NW Mediterranean Sea. Growth rates and frequencies of fission/fusion events were calculated over a period of 13 months, and the reproductive cycle determined after 32 months of observation. For analyses of reproduction, zooids were dissected in the laboratory and classified into five reproductive categories; these data were used to calculate a maturity index. For growth analyses, underwater photographs of marked colonies were used to estimate the surface area of D. fulgens colonies, calculate monthly growth rates, and document fusion and fission events. Clear seasonal patterns in reproduction and growth were observed, with distinct periods of investment into each function. Gonad maturation started in winter and larval release occurred in early summer, just before maximal sea temperatures were reached. After reproducing, colonies shrank and aestivated during the warmer summer months. Growth occurred during the cooler months, with maximal and minimal growth rates observed in winter and summer, respectively. Fusions and fissions occurred year-round, although fissions were more frequent in fall (coincident with high growth rates) and fusions in spring (coincident with reproduction). These results add to the mounting evidence that ascidian life cycles in temperate seas are characterized by a trade-off between investment in reproduction and growth, triggered by seasonal temperature shifts and constrained by resource availability during summer. ; This research was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE- 2010-RG 277038 within the 7th European Community Framework Program, the Spanish Government projects CTM2010-17755 and CTM2010-22218, and the Catalan Government grant 2009SGR-484 for Consolidated Research Groups. ; Peer reviewed
BASE
9 páginas, 3 tablas, 3 figuras. ; Dispersal limitation and environmental selection are the main processes shaping free-living microbial communities, but host-related factors may also play a major role in structuring symbiotic communities. Here, we aimed to determine the effects of isolation-by-distance and host species on the spatial structure of sponge-associated bacterial communities using as a model the abundant demosponge genus Ircinia. We targeted three co-occurring Ircinia species and used terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences to explore the differentiation of their bacterial communities across a scale of hundreds of kilometres in the Western Mediterranean Sea. Multivariate analysis and nonmetric multidimensional scaling plots of T-RFLP profiles showed that bacterial communities in Ircinia sponges were structured by host species and remained stable across sampling locations, despite geographic distances (80–800 km) and diverse local conditions. While significant differences among some locations were observed in Ircinia variabilis-derived communities, no correlation between geographic distance and community similarity was consistently detected for symbiotic bacteria in any host sponge species. Our results indicate that bacterial communities are mostly shaped by host species-specific factors and suggest that evolutionary processes acting on longterm symbiotic relationships have favored spatial stability of sponge-associated bacterial communities. ; This research was funded by the Spanish Government projects CTM2010-17755 and CTM2010- 22218, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, the US National Science Foundation under grant 0853089, and a FI-DGR fellowship to L.P. ; Peer reviewed
BASE
11 páginas,5 figuras, 4 tablas. ; Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health. ; This research was supported by the Spanish Government projects CTM2010-17755 and CTM2010-22218, by the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, and by the U.S. National Science Foundation under grant 0853089. ; Peer reviewed
BASE
14 páginas, 3 tablas, 4 figuras. ; The analysis of temporal genetic variability is an essential yet largely neglected tool to unveil and predict the dynamics of introduced species. We here describe the temporal genetic structure and diversity over time of an introduced population of the ascidian Styela plicata (Lesueur, 1823) in Wilmington (North Carolina, USA, 34°08′24″N, 77°51′44″W). This population suffers important salinity and temperature changes, and in June every year we observed massive die-offs, leaving free substratum that was recolonized within a month. We sampled 12–14 individuals of S. plicata every 2 months from 2007 to 2009 (N = 196) and analyzed a mitochondrial marker (the gene cytochrome oxidase subunit I, COI) and seven nuclear microsatellites. Population genetic analyses showed similar results for both types of markers and revealed that most of the genetic variation was found within time periods. However, analyses conducted with microsatellite loci also showed weak but significant differences among time periods. Specifically, in the samplings after die-off episodes (August–November 2007 and 2008) the genetic diversity increased, the inbreeding coefficient showed prominent drops, and there was a net gain of alleles in the microsatellite loci. Taken together, our results suggest that recruits arriving from neighboring populations quickly occupied the newly available space, bringing new alleles with them. However, other shifts in genetic diversity and allele loss and gain episodes were observed in December–January and February–March 2008, respectively, and were apparently independent of die-off events. Overall, our results indicate that the investigated population is stable over time and relies on a periodic arrival of larvae from other populations, maintaining high genetic diversity and a complex interplay of allele gains and losses. ; This research was supported by a grant from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel (number 2014025), the Spanish Government project CTM2013—48163—and the Catalan Government Grant 2014SGR-336 for Consolidated Research Groups. ; Peer reviewed
BASE
16 páginas, 6 tablas, 4 figuras ; Harbors and marinas are well known gateways for species introductions in marine environments but little work has been done to ascertain relationships between species diversity, harbor type, and geographic distance to uncover patterns of secondary spread. Here, we sampled ascidians from 32 harbors along ca. 300 km of theNWMediterranean coast and investigated patterns of distribution and spread related to harbor type (marina, fishing, commercial) and geographic location using multivariate techniques. In total, 28 ascidians were identified at the species level and another 9 at the genus level based on morphology and genetic barcoding. Eight species were assigned to introduced forms, 15 were given native status and 5 were classified as cryptogenic. Aplidium accarense was reported for the first time in the Mediterranean Sea and was especially abundant in 23 of the harbors. Introduced and cryptogenic species were abundant in most of the surveyed harbors, while native forms were rare and restricted to a few harbors. Significant differences in the distribution of ascidians according to harbor type and latitudinal position were observed. These differences were due to the distribution of introduced species. We obtained a significant correlation between geographic distance and ascidian composition, indicating that closely located harbors shared more ascidian species among them. This study showed that harbors act as dispersal strongholds for introduced species, with native species only appearing sporadically, and that harbor type and geographic location should also be considered when developing management plans to constrain the spread of nonindigenous species in highly urbanized coastlines. ; This study was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 and by the COCONET project #287844, both within the 7th European Community Framework Program, by the Spanish Government project CTM2013-48163, and by the Catalan Government Grant 2014SGR-336 for Consolidated Research Groups. ; Peer reviewed
BASE
19 páginas, 6 figuras, 4 tablas. ; Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I. variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I. fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts. ; This research was supported by the Spanish Government projects CTM2010-17755 and CTM2010-22218 and by the US National Science Foundation under grant 0853089. ; Peer reviewed
BASE
20 páginas, 6 figuras, 4 tablas. ; Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata. ; This research has been funded by project CHALLENGEN (CTM2013-48163) of the Spanish Government. ; Peer reviewed
BASE
3 páginas, 1 tabla. ; The recovery potential of decimated populations of sponges will largely hinge on their populations' size retrieval and their connectivity with conspecifics in unaffected locations. Here, we report on the development of microsatellite markers for estimation of the population connectivity and bottleneck and inbreeding signals in a Mediterranean sponge suffering from disease outbreaks, Ircinia fasciculata. From the 220,876 sequences obtained by genomic pyrosequencing, we isolated 14 polymorphic microsatellite loci and assessed the allelic variation of loci in 24 individuals from 2 populations in the Northwestern Mediterranean. The allele number per locus ranged from 3 to 11, observed heterozygosity from 0.68 to 0.73, and expected heterozygosity from 0.667 to 0.68. No significant linkage disequilibrium between pairs of loci was detected. The 14 markers developed here will be valuable tools for conservation strategies across the distributional range of this species allowing the detection of populations with large genetic diversity loss and high levels of inbreeding. ; This study was funded by the Spanish Government project SOLID CTM2010-17755, and the Catalan Government Grant 2009SGR-484 for Consolidated Research Groups and Juan de la Cierva contracts to AR and RPP. ; Peer reviewed
BASE
11 páginas, 13 figuras, 1 tabla. ; Two didemnid ascidians associating with cyanobacterial symbionts (Prochloron spp.) were firstly recorded from Caribbean Panama: Lissoclinum verrilli, which facultatively harboured Prochloron cells on the colony surface, and Diplosoma simile, which obligately harboured algal cells in the peribranchial and common cloacal cavities within the colonies. While L. verrilli sensu stricto has been exclusively recorded from the Bermudas and Caribbean islands, D. simile is widely distributed in tropical Indo-Pacific regions including oceanic islands such as Hawaii. Partial COI sequences of D. simile from the Caribbean were identical to those from the West Pacific, suggesting a high larval-dispersal ability and broad range of environmental tolerance. Molecular phylogenetics of the symbionts, based on 16S rRNA gene sequences, revealed that both ascidian species were associated with Prochloron, while a Synechocystis sp. sequence was also obtained for L. verrilli. In addition, L. verrilli and D. simile harboured different phylotypes within the Prochloron lineage that included symbionts from various hosts and various Pacific sites. Our results indicate that multiple phylotypes of Prochloron exist in Caribbean Panama and that considering the abundance and the number of host species in the Pacific, Prochloron and D. simile may have come from tropical Indo-West Pacific. ; We are indebted to Drs R. Collin, G. Lambert and R. da Rocha for organizing 'Pan American Advanced Studies Institute: Advanced Tunicate Biology' at Bocas del Toro Research Station, Smithsonian Tropical Research Institute sponsored by National Science Foundation (Grant No. OISE-1034665). We thank the staff of Bocas del Toro Research Station (Smithsonian Tropical Research Institute) and the members of the tunicate course. The present study was partly supported by Grant-in-Aid for Scientific Research (C) no. 23510296 from the Japan Society for the Promotion of Science, by the International Research Hub Project for Climate Change and Coral Reef/Island Dynamics from University of the Ryukyus, by projects CTM2010–17755 and CTM2010–22218 of the Spanish Government, and by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Programme. ; Peer reviewed
BASE