AT2018cow was the nearest and best studied example of a new breed of extra-galactic, luminous and rapidly-evolving transient. Both the progenitor systems and explosion mechanisms of these rapid transients remain a mystery { the energetics, spectral signa- tures, and timescales make them challenging to interpret in established classes of super- novae and tidal disruption events. The rich, multi-wavelength data-set of AT2018cow has still left several interpretations viable to explain the nature of this event. In this paper we analyse integral- eld spectroscopic data of the host galaxy, CGCG137-068, to compare environmental constraints with leading progenitor models. We nd the explosion site of AT2018cow to be very typical of core-collapse supernovae (known to form from stars with MZAMS 8-25 M ), and infer a young stellar population age at the explosion site of few 10Myr, at slightly sub-solar metallicity. When comparing to expectations for exotic intermediate-mass black hole (IMBH) tidal disruption events, we nd no evidence for a potential host system of the IMBH. In particular, there are no abrupt changes in metallicity or kinematics in the vicinity of the explosion site, ar- guing against the presence of a distinct host system. The proximity of AT2018cow to strong star-formation in the host galaxy makes us favour a massive stellar progenitor for this event. ; Science & Technology Facilities Council (STFC) Science and Technology Development Fund (STDF) ST/P000495/1 ; European Union (EU) 839090 ; European Union (EU) PGC2018-095317-B-C21 ; Consejo Nacional de Ciencia y Tecnologia (CONACyT) CB-285080 FC-2016-01-1916 ; (UNAM) project PAPIIT-DGAPA-IN100519 ; European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 0103.D-0440(A)
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = -19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s-1, and then declining approximately linearly to 15 000 km s-1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry. ; MF acknowledges the support of a Royal Society – Science Foundation Ireland University Research Fellowship. The JEKYLL simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Parallelldatorcentrum (PDC). PL acknowledges support from the Swedish Research Council. MS is supported by a generous grant (13261) from Villum Fonden and a project grant (8021-00170B) from the Independent Research Fund Denmark (IRFD). NUTS2 is funded in part by the Instrument Center for Danish Astronomy (IDA). This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects) ESO program 188.D−3003, 191.D−0935, more ESO acknowledgements. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST−1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. The SCUSS is funded by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KJCX2−EW−T06). It is also an international cooperative project between National Astronomical Observatories, Chinese Academy of Sciences, and Steward Observatory, University of Arizona, USA. Technical support and observational assistance from the Bok telescope are provided by Steward Observatory. The project is managed by the National Astronomical Observatory of China and Shanghai Astronomical Observatory. Data resources are supported by Chinese Astronomical Data Center (CAsDC). SD and PC acknowledge Project 11573003 supported by NSFC. This research uses data obtained through the Telescope Access Program (TAP), which has been funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences, and the Special Fund for Astronomy from the Ministry of Finance. SJS acknowledges STFC grant ST/P000312/1. This work has made use of data from the Asteroid Terrestial-impact Last Alert System (ATLAS) Project. ATLAS is primarily funded to search for near earth asteroids through NASA grants NN12AR55G, 80NSSC18K0284, and 80NSSC18K1575; byproducts of the NEO search include images and catalogues from the survey area. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen's Univeristy Belfast, the Space Telescope Science Institute, and the South African Astronomical Observatory. OR acknowledges support by projects IC120009 'Millennium Institute of Astrophysics (MAS)' of the Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo de Chile and CONICYT PAI/INDUSTRIA 79090016. JH acknowledges financial support from the Finnish Cultural Foundation. Some data were taken with the Las Cumbres Observatory Network. GH and DAH are supported by NSF grant AST-1313484. GH thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant #1829740, the Brinson Foundation, and the Moore Foundation; his participation in the program has benefited this work. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090. This work also makes use of observations collected at the European Southern Observatory under ESO programme 0103.D-0338(A). CPG acknowledges support from EU/FP7-ERC grant no. [615929].
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = -19.95 +/- 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in( )H alpha are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s(-1), and then declining approximately linearly to 15000 km s(-1) over similar to 100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the JEKYLL code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H alpha absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry. ; Jenny and AnttiWihuri Foundation Vilho, Yrjo and Kalle Vaisala Fund of the Finnish academy of Science and Letters UCD seed funding scheme SF1518 Science Foundation Ireland Swedish Research Council Villum Fonden 13261 Independent Research Fund Denmark (IRFD) 802100170B Instrument Center for Danish Astronomy (IDA) European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects) ESO program 188.D-3003 191.D-0935 National Aeronautics & Space Administration (NASA) NNX08AR22G National Science Foundation (NSF) AST-1238877 Chinese Academy of Sciences KJCX2-EW-T06 Chinese Astronomical Data Center (CAsDC) National Natural Science Foundation of China 11573003 National Astronomical Observatories of China Chinese Academy of Sciences Special Fund for Astronomy from the Ministry of Finance Science & Technology Facilities Council (STFC) ST/P000312/1 National Aeronautics & Space Administration (NASA) NN12AR55G 80NSSC18K0284 80NSSC18K1575 Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo de Chile IC120009 CONICYT PAI/INDUSTRIA 79090016 Finnish Cultural Foundation National Science Foundation (NSF) AST-1313484 LSSTC Data Science Fellowship Program - LSSTC NSF Cybertraining Grant 1829740 Brinson Foundation Gordon and Betty Moore Foundation European Union (EU) 839090 European Southern Observatory under ESO programme 0103.D0338(A) EU/FP7-ERC grant 615929
The Type Ia supernova (SN Ia) LSQ14fmg exhibits exaggerated properties that may help to reveal the origin of the "super-Chandrasekhar" (or 03fg-like) group. The optical spectrum is typical of a 03fg-like SN Ia, but the light curves are unlike those of any SNe Ia observed. The light curves of LSQ14fmg rise extremely slowly. At -23 rest-frame days relative toB-band maximum, LSQ14fmg is already brighter thanJandHbands, far more luminous than any 03fg-like SNe Ia with near-infrared observations. At 1 month past maximum, the optical light curves decline rapidly. The early, slow rise and flat color evolution are interpreted to result from an additional excess flux from a power source other than the radioactive decay of the synthesized Ni-56. The excess flux matches the interaction with a typical superwind of an asymptotic giant branch (AGB) star in density structure, mass-loss rate, and duration. The rapid decline starting at around 1 month pastB-band maximum may be an indication of rapid cooling by active carbon monoxide (CO) formation, which requires a low-temperature and high-density environment. These peculiarities point to an AGB progenitor near the end of its evolution and the core degenerate scenario as the likely explosion mechanism for LSQ14fmg. ; National Science Foundation (NSF) AST-1008343 AST-1613426 AST-1613455 AST-1613472 AST-1008962 AST-1907570 AST1920392 AST-1911074 AST-1515927 AST1908570 AST-0908816 Danish Agency for Science and Technology and Innovation through a Sapere Aude Level 2 grant European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant 839090 European Union (EU) PGC2018-095317-B-C21 DiRAC Institute in the Department of Astronomy at the University of Washington George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy Mitchell Foundation Academy of Finland 324504 328898 National Aeronautics & Space Administration (NASA) 80NSSC19K1717 Gordon and Betty Moore Foundation GBMF5490 Mt. Cuba Astronomical Foundation Ohio State University Chinese Academy of Sciences South America Center for Astronomy (CASSACA) Villum Foundation Independent Research Fund Denmark (IRFD) 8021-00170B VILLUM FONDEN 13261 28021 ESO Telescopes at the Paranal Observatory 099. D-0022(A)