Electing an Eligible leader is a highest and prestigious responsibilities of every citizen of the country. Conducting the election and announcing the election results is a time and resource consuming task. Introduction of Electronic Voting Machines EVM greatly reduced the burden of operation but raises many concerns about the authentication of the results. Failure political parties often blame the functioning of the EVM is compromised with hacking techniques and intentional malpractice. This project work endeavors to solve the continuous accusations over EVM through following multi verification methods. Wireless voting copy machine and surveillance camera based voting counting. When a voter cast his her vote a local copy of the data will be stored inside the EVM. Along with this verification a surveillance camera will recognize the casting vote with motion estimation. After the election, during data counting all the above two types of results will be compared to get a unique and authenticated result, which cannot be accused for malpractice. Jones Arthi S | Kousalya R | Kumari M "Manifest Electronic Voting Machine Using Image Processing" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-3 , April 2018, URL: https://www.ijtsrd.com/papers/ijtsrd11509.pdf
BACKGROUND: Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES: The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS: We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS: Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 × 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 × 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0.994), which was statistically different from the observational estimate (p = 1.6 × 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS: Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD. ; The individual study sponsor(s) had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Dr. Isgum is supported by research grants from Pie Medical Imaging, 3Mensio Medical Imaging B.V., the NWO and Foundation for Technological Sciences under Project 12726, The Netherlands Organization for Health Research and Development, and the Dutch Cancer Society. Dr. Arpegård has received funding through the Stockholm County Council (combined clinical residency and PhD training program). Dr. Amouyel has received personal fees from Servier, Hoffman Laroche, Total, Genoscreen, Alzprotect, Fondation Plan Alzheimer, and Takeda outside of the submitted work; and has shares in Genoscreen. Dr. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science under grant number WT098017. Dr. Worrall has received compensation for his role as deputy editor of the Journal of Neurology; and has received National Institutes of Health funding through the National Institute of Neurological Disorders and Stroke (U-01 NS069208) and National Human Genome Research Institute (U-01 HG005160). Dr. Samani is supported by the British Heart Foundation (BHF); and is a National Institute for Health Research Senior Investigator. Dr. Nelson is supported by the BHF. Dr. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA; Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. Dr. Patel is supported by a BHF Intermediate Fellowship. Dr. Koenig has received funds through NGFNplus, project number 01GS0834; has received research grants from Abbott, Roche Diagnostics, Beckmann, and Singulex; has received honorarium for lectures from AstraZeneca, Novartis, Merck Sharp & Dohme, Amgen, and Actavis; and has served as a consultant for Novartis, Pfizer, The Medicines Company, Amgen, AstraZeneca, Merck Sharp & Dohme, and GlaxoSmithKline. Dr. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Dr. Svensson has received a grant from the Swedish Society of Medicine (SLS-412071). Dr. Kivimaki has received funding through the Medical Research Council (K013351), Economic and Social Research Council, and National Institutes of Health (HL36310). Dr. Dehghan is supported by a Netherlands Organization for Scientific Research (NWO) grant (VENI, 916.12.154) and the EUR Fellowship; and has received consultancy and research support from Metagenics Inc. (outside the scope of this work). Dr. Ingelsson is supported by grants from Göran Gustafsson Foundation, Swedish Heart-Lung Foundation (20140422), Knut and Alice Wallenberg Foundation (Knut och Alice Wallenbergs Stiftelse), European Research Council (ERC-StG-335395), Swedish Diabetes Foundation (Diabetesfonden; grant no. 2013-024), and the Swedish Research Council (VR; grant no. 2012-1397). Dr. de Bakker is an employee of Vertex Pharmaceuticals. Dr. Ärnlöv was funded by the Swedish Research Council (2012-1727, 2012-2215), Swedish Heart-Lung Foundation, Thuréus Foundation, the Marianne and Marcus Wallenberg Foundation, Dalarna University, and Uppsala University. Dr. Asselbergs is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals National Institute for Health Research Biomedical Research Centre. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° HEALTH-F2-2013-601456 (CVgenes-at-target). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. ; Peer-reviewed ; Publisher Version
This is the final version. Available on open access from Nature Research via the DOI in this record. ; Data availability: GWAS summary statistics for FG/FI analyses presented in this manuscript are deposited on https://www.magicinvestigators.org/downloads/ and will be also be available through the NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/downloads/summary-statistics. Raw files for RNA-seq mRNA expression in islet donors have been deposited in NCBI GEO database with the accession code GSE50398. Summary-level GWAS results for genetic correlation analysis with glycemic traits were downloaded from the LDHub database (http://ldsc.broadinstitute.org/ldhub/). Islets from 89 cadaver donors were provided by the Nordic Islet Transplantation Programme (http://www.medscinet.com/nordicislets/). The dexseq_count python script for RNA sequencing analysis in human pancreatic islets was downloaded from http://www-huber.embl.de/pub/DEXSeq/analysis/scripts/. Raw files for RNA-seq mRNA expression in islet donors have been deposited in NCBI GEO database with the accession code GSE50398. ; Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes. ; Academy of Finland ; ADA ; Biotechnology and Biological Sciences Research Council (BBSRC) ; BHF ; Clinical Translational Science Institute ; Croatian Ministry of Science ; Directorate C - Public Health and Risk Assessment, Health & Consumer Protection ; Dutch Kidney Foundation ; Estonian Research Council ; European Research Council (ERC) ; European Regional Development Fund (ERDF) ; European Union Horizon 2020 ; Federal Ministry of Education and Research (BMBF), Germany ; Finnish Funding Agency for Technology and Innovation ; German Research Foundation ; Greek General Secretary of Research and Technology ; Icelandic National Bioethics Committee ; IFB Adiposity Diseases ; IngaBritt och Arne Lundberg's Research Foundation ; Italian Ministry of Health ; Knut & Alice Wallenberg foundation ; Kuopio University Hospital from Ministry of Health and Social Affairs ; Affymetrix, Inc ; Lundberg Foundation ; Medical Research Council (MRC) ; Mid-Atlantic Nutrition Obesity Research Center ; Ministry of Education and Culture of Finland ; MRC-GSK pilot programme ; NHLBI ; NIA ; NIH ; Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET ; Novo Nordisk Foundation ; NWO/ZonMW ; Spinozapremie ; Rutgers University Cell and DNA Repository ; Stockholm County Council ; Swedish Foundation for Strategic Research ; Swedish Heart-Lung Foundation ; Swedish Research Council ; Swiss National Science Foundation ; TEKES ; Torsten och Ragnar Söderbergs Stiftelser ; Wellcome Trust ; Yrjö Jahnsson Foundation ; Note that the full list of funders and grant numbers is available in the online article and in the PDF in this record
Funding for this study was provided by the Aase and Ejner Danielsens Foundation; Academy of Finland (41071, 77299, 102318, 110413, 117787, 121584, 123885, 124243, 124282, 126925, 129378, 134309, 286284); Accare Center for Child and Adolescent Psychiatry; Action on Hearing Loss (G51); Agence Nationale de la 359 Recherche; Agency for Health Care Policy Research (HS06516); ALF/LUA research grant in Gothenburg; ALFEDIAM; ALK-Abello´ A/S; Althingi; American Heart Association (13POST16500011); Amgen; Andrea and Charles Bronfman Philanthropies; Ardix Medical; Arthritis Research UK; Association Diabe`te Risque Vasculaire; Australian National Health and Medical Research Council (241944, 339462, 389875, 389891, 389892, 389927, 389938, 442915, 442981, 496739, 552485, 552498); Avera Institute; Bayer Diagnostics; Becton Dickinson; BHF (RG/14/5/30893); Boston Obesity Nutrition Research Center (DK46200), Bristol-Myers Squibb; British Heart Foundation (RG/10/12/ 28456, RG2008/08, RG2008/014, SP/04/002); Medical Research Council of Canada; Canadian Institutes for Health Research (FRCN-CCT-83028); Cancer Research UK; Cardionics; Cavadis B.V., Center for Medical Systems Biology; Center of Excellence in Genomics; CFI; CIHR; City of Kuopio; CNAMTS; Cohortes Sante´ TGIR; Contrat de Projets E´tat-Re´gion; Croatian Science Foundation (8875); Danish Agency for Science, Technology and Innovation; Danish Council for Independent Research (DFF-1333- 00124, DFF-1331-00730B); County Council of Dalarna; Dalarna University; Danish Council for Strategic Research; Danish Diabetes Academy; Danish Medical Research Council; Department of Health, UK; Development Fund from the University of Tartu (SP1GVARENG); Diabetes Hilfs- und Forschungsfonds Deutschland; Diabetes UK; Diabetes Research and Wellness Foundation Fellowship; Donald W. Reynolds Foundation; Dr Robert Pfleger-Stiftung; Dutch Brain Foundation; Dutch Diabetes Research Foundation; Dutch Inter University Cardiology Institute; Dutch Kidney Foundation (E033); Dutch Ministry of Justice; the DynaHEALTH action No. 633595, Economic Structure Enhancing Fund of the Dutch Government; Else Kro¨ner-Fresenius-Stiftung (2012_A147, P48/08//A11/08); Emil Aaltonen Foundation; Erasmus University Medical Center Rotterdam; Erasmus MC and Erasmus University Rotterdam; the Municipality of Rotterdam; Estonian Government (IUT20-60, IUT24-6); Estonian Research Roadmap through the Estonian Ministry of Education and Research (3.2.0304.11-0312); European Research Council (ERC Starting Grant and 323195:SZ-245 50371-GLUCOSEGENESFP7-IDEAS-ERC); European Regional Development Fund; European Science Foundation (EU/QLRT-2001-01254); European Commission (018947, 018996, 201668, 223004, 230374, 279143, 284167, 305739, BBMRI-LPC-313010, HEALTH-2011.2.4.2-2-EUMASCARA, HEALTH-2011-278913, HEALTH-2011-294713-EPLORE, HEALTH-F2- 2008-201865-GEFOS, HEALTH-F2-2013-601456, HEALTH-F4-2007-201413, HEALTH-F4-2007-201550-HYPERGENES, HEALTH-F7-305507 HOMAGE, IMI/ 115006, LSHG-CT-2006-018947, LSHG-CT-2006-01947, LSHM-CT-2004-005272, LSHM-CT-2006-037697, LSHM-CT-2007-037273, QLG1-CT-2002-00896, QLG2-CT2002-01254); Faculty of Biology and Medicine of Lausanne; Federal Ministry of Education and Research (01ZZ0103, 01ZZ0403, 01ZZ9603, 03IS2061A, 03ZIK012); Federal State of Mecklenburg-West Pomerania; Fe´de´ration Franc¸aise de Cardiologie; Finnish Cultural Foundation; Finnish Diabetes Association; Finnish Foundation of Cardiovascular Research; Finnish Heart Association; Fondation Leducq; Food Standards Agency; Foundation for Strategic Research; French Ministry of Research; FRSQ; Genetic Association Information Network (GAIN) of the Foundation for the NIH; German Federal Ministry of Education and Research (BMBF, 01ER1206, 01ER1507); GlaxoSmithKline; Greek General Secretary of Research and Technology; Go¨teborg Medical Society; Health and Safety Executive; Healthcare NHS Trust; Healthway; Western Australia; Heart Foundation of Northern Sweden; Helmholtz Zentrum Mu¨nchen—German Research Center for Environmental Health; Hjartavernd; Ingrid Thurings Foundation; INSERM; InterOmics (PB05 MIUR-CNR); INTERREG IV Oberrhein Program (A28); Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001); Italian Ministry of Health (ICS110.1/RF97.71); Italian Ministry of Economy and Finance (FaReBio di Qualita`); Marianne and Marcus Wallenberg Foundation; the Ministry of Health, Welfare and Sports, the Netherlands; J.D.E. and Catherine T, MacArthur Foundation Research Networks on Successful Midlife Development and Socioeconomic Status and Health; Juho Vainio Foundation; Juvenile Diabetes Research Foundation International; KfH Stiftung Pra¨ventivmedizin e.V.; King's College London; Knut and Alice Wallenberg Foundation; Kuopio University Hospital; Kuopio, Tampere and Turku University Hospital Medical Funds (X51001); La Fondation de France; Leenaards Foundation; Lilly; LMUinnovativ; Lundberg Foundation; Magnus Bergvall Foundation; MDEIE; Medical Research Council UK (G0000934, G0601966, G0700931, MC_U106179471, MC_UU_12019/1); MEKOS Laboratories; Merck Sante´; Ministry for Health, Welfare and Sports, The Netherlands; Ministry of Cultural Affairs of Mecklenburg-West Pomerania; Ministry of Economic Affairs, The Netherlands; Ministry of Education and Culture of Finland (627;2004-2011); Ministry of Education, Culture and Science, The Netherlands; Ministry of Science, Education and Sport in the Republic of Croatia (108-1080315-0302); MRC centre for Causal Analyses in Translational Epidemiology; MRC Human Genetics Unit; MRC-GlaxoSmithKline pilot programme (G0701863); MSD Stipend Diabetes; National Institute for Health Research; Netherlands Brain Foundation (F2013(1)-28); Netherlands CardioVascular Research Initiative (CVON2011-19); Netherlands Genomics Initiative (050-060-810); Netherlands Heart Foundation (2001 D 032, NHS2010B280); Netherlands Organization for Scientific Research (NWO) and Netherlands Organisation for Health Research and Development (ZonMW) (56-464- 14192, 60-60600-97-118, 100-001-004, 261-98-710, 400-05-717, 480-04-004, 480-05-003, 481-08-013, 904-61-090, 904-61-193, 911-11-025, 985-10-002, Addiction-31160008, BBMRI–NL 184.021.007, GB-MaGW 452-04-314, GB-MaGW 452-06-004, GB-MaGW 480-01-006, GB-MaGW 480-07-001, GB-MW 940-38-011, Middelgroot-911-09-032, NBIC/BioAssist/RK 2008.024, Spinozapremie 175.010.2003.005, 175.010.2007.006); NATURE COMMUNICATIONS | DOI:10.1038/ncomms14977 ARTICLE NATURE COMMUNICATIONS | 8:14977 | DOI:10.1038/ncomms14977 | www.nature.com/naturecommunications 13 Neuroscience Campus Amsterdam; NHS Foundation Trust; National Institutes of Health (1RC2MH089951, 1Z01HG000024, 24152, 263MD9164, 263MD821336, 2R01LM010098, 32100-2, 32122, 32108, 5K99HL130580-02, AA07535, AA10248, AA11998, AA13320, AA13321, AA13326, AA14041, AA17688, AG13196, CA047988, DA12854, DK56350, DK063491, DK078150, DK091718, DK100383, DK078616, ES10126, HG004790, HHSN268200625226C, HHSN268200800007C, HHSN268201200036C, HHSN268201500001I, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C, HL043851, HL45670, HL080467, HL085144, HL087660, HL054457, HL119443, HL118305, HL071981, HL034594, HL126024, HL130114, KL2TR001109, MH66206, MH081802, N01AG12100, N01HC55015, N01HC55016, N01C55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC95159, N01HC95160, N01HC95161, N01HC95162, N01HC95163, N01HC95164, N01HC95165, N01HC95166, N01HC95167, N01HC95168, N01HC95169, N01HG65403, N01WH22110, N02HL6-4278, N01-HC-25195, P01CA33619, R01HD057194, R01HD057194, R01AG023629, R01CA63, R01D004215701A, R01DK075787, R01DK062370, R01DK072193, R01DK075787, R01DK089256, R01HL53353, R01HL59367, R01HL086694, R01HL087641, R01HL087652, R01HL103612, R01HL105756, R01HL117078, R01HL120393, R03 AG046389, R37CA54281, RC2AG036495, RC4AG039029, RPPG040710371, RR20649, TW008288, TW05596, U01AG009740, U01CA98758, U01CA136792, U01DK062418, U01HG004402, U01HG004802, U01HG007376, U01HL080295, UL1RR025005, UL1TR000040, UL1TR000124, UL1TR001079, 2T32HL007055-36, T32GM074905, HG002651, HL084729, N01-HC25195, UM1CA182913); NIH, National Institute on Aging (Intramural funding, NO1-AG-1-2109); Northern Netherlands Collaboration of Provinces; Novartis Pharma; Novo Nordisk; Novo Nordisk Foundation; Nutricia Research Foundation (2016-T1); ONIVINS; Parnassia Bavo group; Pierre Fabre; Province of Groningen; Pa¨ivikki and Sakari Sohlberg Foundation; Påhlssons Foundation; Paavo Nurmi Foundation; Radboud Medical Center Nijmegen; Research Centre for Prevention and Health, the Capital Region of Denmark; the Research Institute for Diseases in the Elderly; Research into Ageing; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; Roche; Royal Society; Russian Foundation for Basic Research (NWO-RFBR 047.017.043); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06); Sanofi-Aventis; Scottish Government Health Directorates, Chief Scientist Office (CZD/16/6); Siemens Healthcare; Social Insurance Institution of Finland (4/26/2010); Social Ministry of the Federal State of Mecklenburg-West Pomerania; Socie´te´ Francophone du 358 Diabe`te; State of Bavaria; Stiftelsen fo¨r Gamla Tja¨narinnor; Stockholm County Council (560183, 592229); Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and Stockholm County Council; Stroke Association; Swedish Diabetes Association; Swedish Diabetes Foundation (2013-024); Swedish Foundation for Strategic Research; Swedish Heart-Lung Foundation (20120197, 20150711); Swedish Research Council (0593, 8691, 2012-1397, 2012-1727, and 2012-2215); Swedish Society for Medical Research; Swiss Institute of Bioinformatics; Swiss National Science Foundation (3100AO-116323/1, 31003A-143914, 33CSCO-122661, 33CS30-139468, 33CS30-148401, 51RTP0_151019); Tampere Tuberculosis Foundation; Technology Foundation STW (11679); The Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Ministry of the Flemish Community (G.0880.13, G.0881.13); The Great Wine Estates of the Margaret River Region of Western Australia; Timber Merchant Vilhelm Bangs Foundation; Topcon; Tore Nilsson Foundation; Torsten and Ragnar So¨derberg's Foundation; United States – Israel Binational Science Foundation (Grant 2011036), Umeå University; University Hospital of Regensburg; University of Groningen; University Medical Center Groningen; University of Michigan; University of Utrecht; Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) (b2011036); Velux Foundation; VU University's Institute for Health and Care Research; Va¨stra Go¨taland Foundation; Wellcome Trust (068545, 076113, 079895, 084723, 088869, WT064890, WT086596, WT098017, WT090532, WT098051, 098381); Wissenschaftsoffensive TMO; Yrjo¨ Jahnsson Foundation; and Åke Wiberg Foundation