Suchergebnisse
6 Ergebnisse
Sortierung:
SSRN
SSRN
Dynamic routing of prioritized warranty repairs
In: Naval research logistics: an international journal, Band 55, Heft 1, S. 16-26
ISSN: 1520-6750
AbstractRecent years have seen a strong trend toward outsourcing warranty repair services to outside vendors. In this article we consider the problem of dynamically routing warranty repairs to service vendors when warranties have priority levels. Each time an item under warranty fails, it is sent to one of the vendors for repair. Items covered by higher priority warranty receive higher priority in repair service. The manufacturer pays a fixed fee per repair and incurs a linear holding cost while an item is undergoing or waiting for repair. The objective is to minimize the manufacturer's long‐run average cost. Because of the complexity of the problem, it is very unlikely that there exist tractable ways to find the optimal routing strategies. Therefore, we propose five heuristic routing procedures that are applicable to real‐life problems. We evaluate the heuristics using simulation. The simulation results show that the index‐based "generalized join the shortest queue" policy, which applies a single policy improvement step to an initial state‐independent policy, performs the best among all five heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008
Competitive Investment with Bayesian Learning: Choice of Business Size and Timing
In: Forthcoming in Operations Research.
SSRN
Outsourcing warranty repairs: Dynamic allocation
In: Naval research logistics: an international journal, Band 52, Heft 5, S. 381-398
ISSN: 1520-6750
AbstractIn this paper we consider the problem of minimizing the costs of outsourcing warranty repairs when failed items are dynamically routed to one of several service vendors. In our model, the manufacturer incurs a repair cost each time an item needs repair and also incurs a goodwill cost while an item is awaiting and undergoing repair. For a large manufacturer with annual warranty costs in the tens of millions of dollars, even a small relative cost reduction from the use of dynamic (rather than static) allocation may be practically significant. However, due to the size of the state space, the resulting dynamic programming problem is not exactly solvable in practice. Furthermore, standard routing heuristics, such as join‐the‐shortest‐queue, are simply not good enough to identify potential cost savings of any significance. We use two different approaches to develop effective, simply structured index policies for the dynamic allocation problem. The first uses dynamic programming policy improvement while the second deploys Whittle's proposal for restless bandits. The closed form indices concerned are new and the policies sufficiently close to optimal to provide cost savings over static allocation. All results of this paper are demonstrated using a simulation study. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005
Warranty reserves for nonstationary sales processes
In: Naval research logistics: an international journal, Band 49, Heft 5, S. 499-513
ISSN: 1520-6750
AbstractEstimation of warranty costs, in the event of product failure within the warranty period, is of importance to the manufacturer. Costs associated with replacement or repair of the product are usually drawn from a warranty reserve fund created by the manufacturer. Considering a stochastic sales process, first and second moments (and thereby the variance) are derived for the manufacturer's total discounted warranty cost of a single sale for single‐component items under four different warranty policies from a manufacturer's point of view. These servicing strategies represent a renewable free‐replacement, nonrenewable free‐replacement, renewable pro‐rata, and a nonrenewable minimal‐repair warranty plans. The results are extended to determine the mean and variance of total discounted warranty costs for the total sales over the life cycle of the product. Furthermore, using a normal approximation, warranty reserves necessary for a certain protection level, so that reserves are not completely depleted, are found. Results and their managerial implications are studied through an extensive example. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 499–513, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10023