Point-Of-Interest Recommendation in Location-Based Social Networks
In: SpringerBriefs in Computer Science Ser.
Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Overview -- 1.2 Backgrounds -- 1.2.1 Problem Description -- 1.2.2 User Behavior Analysis -- 1.2.3 Methodologies -- 1.3 Book Organization -- References -- 2 Understanding Human Mobility from Geographical Perspective -- 2.1 Introduction -- 2.2 Related Work -- 2.3 Model -- 2.3.1 Gaussian Mixture Model -- 2.3.2 Genetic Algorithm Based Gaussian Mixture Model -- 2.4 Experiment -- 2.4.1 Setup and Metrics -- 2.4.2 Dataset -- 2.4.3 Results -- 2.5 Conclusion -- References -- 3 Understanding Human Mobility from Temporal Perspective -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Preliminaries -- 3.3.1 Empirical Data Analysis -- 3.3.2 Time Labeling Scheme -- 3.4 Method -- 3.4.1 Aggregated Temporal Tensor Factorization Model -- 3.4.2 Learning -- 3.4.3 Model Discussion -- 3.5 Experiment -- 3.5.1 Data Description and Experimental Setting -- 3.5.2 Performance Metrics -- 3.5.3 Baselines -- 3.5.4 Experimental Results -- 3.6 Conclusion -- References -- 4 Geo-Teaser: Geo-Temporal Sequential Embedding Rank for POI Recommendation -- 4.1 Introduction -- 4.2 Related Work -- 4.3 Data Description and Analysis -- 4.3.1 Data Description -- 4.3.2 Empirical Analysis -- 4.4 Method -- 4.4.1 Temporal POI Embedding -- 4.4.2 Geographically Hierarchical Pairwise Ranking -- 4.4.3 Geo-Teaser Model -- 4.4.4 Learning -- 4.5 Experimental Evaluation -- 4.5.1 Experimental Setting -- 4.5.2 Performance Metrics -- 4.5.3 Model Comparison -- 4.5.4 Experimental Results -- 4.6 Conclusion -- References -- 5 STELLAR: Spatial-Temporal Latent Ranking Model for Successive POI Recommendation -- 5.1 Introduction -- 5.2 Related Work -- 5.3 Data Description and Successive Check-in Analysis -- 5.3.1 Data Description -- 5.3.2 Successive Check-in Analysis -- 5.4 STELLAR Model -- 5.4.1 Time Indexing Scheme -- 5.4.2 Model Formulation.