The chikungunya fever epidemic in northern Italy in 2007 and the recent demonstration of the introduction of various exotic mosquito species alerted the European nations to a growing risk of invasion by vector mosquitoes and outbreaks of mosquito-borne infectious diseases. The importation of both mosquitoes and pathogens they are able to transmit is facilitated by increasing international trade and travel. Environmental and climatic changes do not only set the ground for the establishment of invasive mosquitoes away from their natural distribution areas but often also have beneficial effects on indigenous potential vector species, such as support of spread, growth in population density and extension of seasonal activity, thus increasing the probability of these biting a person or a reservoir animal infected with a mosquito-borne pathogen and transmitting it. While there is a considerable body of literature on invasive mosquito species and imported pathogens due to their relevance in their natural distribution areas, data on endemic mosquito species and mosquito-borne pathogens circulating in Europe are relatively scarce. With a few exceptions, these have in fact for several decades been of minor importance with respect to public health impact. Both the role of mosquitoes as vectors of disease agents and the scientific and political attention to mosquito-borne diseases, however, appear to be growing in Europe with ongoing globalization. We here discuss indigenous mosquito species that have historically been involved in pathogen transmission in Europe or have been demonstrated to be vectors elsewhere and that may contribute to future disease outbreaks in Europe. Likewise, we present mosquito-borne pathogens that have been circulating in Europe or are considered probable to be introduced and established in the future.
In: Umweltwissenschaften und Schadstoff-Forschung: UWSF ; Zeitschrift für Umweltchemie und Ökotoxikologie ; Organ des Verbandes für Geoökologie in Deutschland (VGöD) und der Eco-Informa, Band 19, Heft 1, S. 37-46
Intensified travel activities of humans and the ever growing global trade create opportunities of arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring programme was initiated in Germany in 2011, which has been complemented by a citizen science project, the 'Mückenatlas' since 2012. We analysed the 'Mückenatlas' dataset to (1) investigate causes of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases induced by opportunistic data collection. Our results show that the temporal variation of submissions over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-scale climate conditions. Hurdle models suggest a positive association of submission numbers with human population, catch location in the former political East Germany and the presence of water bodies, whereas precipitation and wind speed are negative predictors. We conclude that most anthropogenic and environmental effects on submission patterns are associated with the participants' (recording) behaviour. Understanding how the citizen scientists' behaviour shape opportunistic datasets help to take full advantage of the available information.
Intensified travel activities of humans and the ever growing global trade create opportunities of arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring programme was initiated in Germany in 2011, which has been complemented by a citizen science project, the 'Mückenatlas' since 2012. We analysed the 'Mückenatlas' dataset to (1) investigate causes of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases induced by opportunistic data collection. Our results show that the temporal variation of submissions over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-scale climate conditions. Hurdle models suggest a positive association of submission numbers with human population, catch location in the former political East Germany and the presence of water bodies, whereas precipitation and wind speed are negative predictors. We conclude that most anthropogenic and environmental effects on submission patterns are associated with the participants' (recording) behaviour. Understanding how the citizen scientists' behaviour shape opportunistic datasets help to take full advantage of the available information.
Intensified travel activities of humans and the ever growing global trade create opportunities of arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring programme was initiated in Germany in 2011, which has been complemented by a citizen science project, the 'Mückenatlas' since 2012. We analysed the 'Mückenatlas' dataset to (1) investigate causes of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases induced by opportunistic data collection. Our results show that the temporal variation of submissions over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-scale climate conditions. Hurdle models suggest a positive association of submission numbers with human population, catch location in the former political East Germany and the presence of water bodies, whereas precipitation and wind speed are negative predictors. We conclude that most anthropogenic and environmental effects on submission patterns are associated with the participants' (recording) behaviour. Understanding how the citizen scientists' behaviour shape opportunistic datasets help to take full advantage of the available information.
Citizen Science (CS), a term for citizen engagement in scientific research, enables large₋scale and low-cost data collection. It allows the active participation of citizens in scientific research including topics such as environmental issues, social problems and regional history, and provides room for interaction between citizens and scientists. Resulting changes in the consciousness of citizens may thus influence a variety of social and political fields. In Germany, a country with a long history of citizens participating in scientific research, the remarkable growth of CS in recent years has attracted attention from scientists and qualified as a research approach from research institutes in various scientific fields. This paper focuses on the 96 CS projects registered on the official website of the German Federal Ministry for Education and Research (BMBF). Upon analyzing and categorizing these projects according to starting year, target age group, activities, research field, project goal and organization, the following conclusions were drawn. 1) Digitalization of projects and internet use have led to the rapid growth of CS in recent years; 2) participation is easy; 3) a wide range of research fields and activities make it possible for citizens to contribute to projects according to their skills and interests; 4) project goals range from nature conservation to policy enactment; 5) CS is considered important and worth supporting by the German government. Furthermore, the website of the BMBF was found to be an easy and effective medium for citizens to gather information on projects matching their interests.
A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted. ; Data from Italy were provided by the National and Regional Surveillance Programs supported by the Ministry of Health and the Regional authorities of Veneto, Fruili Venezia Giulia, Emilia and Lombardia. IPZ highly acknowledges the financial contribution of the Swiss Federal Veterinary Office (grant 1.12.17 and National Centre for Vector Ecology). Acknowledgements to the Federal Office for the Environment for financing the mosquito collection activity and the Federal Office for Civil Protection for financing the molecular analysis. Surveillance in Greece was funded by contributions from the Hellenic Centre for Disease Control and Prevention and the Development Agency of Thessaloniki S.A. Spanish surveillance for West Nile virus and mosquitoes has been funded by Projects from the European Union (EDEN, Eurowestnile and EDENext), Spanish Ministry of Health (EVITAR), Spanish Ministry of Economy and Competitivity (CGL2009-11445 and CGL2012-30759) and Junta de Andalucía (P07-RNM-02511 and P11-RNM-7038). Nicholas Johnson is funded by Defra grant SE4112 (Development of reseach tools to support arthropod-borne virus investigation). Anthony J. Wilson is funded by the Biotechnology and Biological Sciences Research Council (grant number BBS/B/00603).