Suchergebnisse
Filter
7 Ergebnisse
Sortierung:
A guidance for the enrichment of micropollutants from wastewater by solid-phase extraction before bioanalytical assessment
In: Environmental sciences Europe: ESEU, Band 36, Heft 1
ISSN: 2190-4715
Abstract
Background
Wastewater can contain a complex mixture of organic micropollutants, with both chemical analysis and effect-based methods needed to identify relevant micropollutants and detect mixture effects. Solid-phase extraction (SPE) is commonly used to enrich micropollutants prior to analysis. While the recovery and stability of individual micropollutants by SPE has been well studied, few studies have optimized SPE for effect-based methods. The aim of the current study was to develop and evaluate two standard operating procedures (SOPs) for the enrichment of micropollutants in preparation for chemical analysis and bioanalysis, one covering a broad range of chemicals and the other selective for estrogenic chemicals.
Results
Pristine surface water spiked with > 600 micropollutants was used to develop a generic extraction method for micropollutants with a wide range of physiochemical properties, while water spiked with estrogenic chemicals was used to identify a selective extraction method. Three different SPE sorbents were tested, with recoveries of individual chemicals and effect in assays indicative of mutagenicity, estrogenic activity, and fish embryo toxicity assessed. The sorbent HRX at pH 7 was selected for the generic extraction method as it showed the best recovery of both individual chemicals and effect in the bioassays. The sorbent HLB at pH 3 showed optimal recovery of estrogenic chemicals and estrogenic activity. The two optimal SPE methods were applied to spiked and unspiked wastewater effluents, with the concentrations of detected chemicals and observed effects similar to those of previous studies. The long-term storage of both extracts and SPE cartridges for estrogens and estrogenic activity after extraction with the HRX and HLB methods were evaluated, with estrogenic effectiveness close to 100% after 112 days when HLB was used.
Conclusions
HRX is recommended for generic extraction, while HLB is optimal for the selective extraction of estrogenic micropollutants. However, if a laboratory only wants to use a single SPE sorbent, HLB can be used for both generic and selective extraction as it yielded similar chemical and effect recovery as HRX for a wide range of micropollutants. This paper is supplemented by the final SOP that includes a variant for generic extraction and one for the extraction of estrogenic chemicals.
Estrogenicity of chemical mixtures revealed by a panel of bioassays
International audience ; Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75–304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays – based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
BASE
Estrogenicity of chemical mixtures revealed by a panel of bioassays
Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75–304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays – based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be ...
BASE
Estrogenicity of chemical mixtures revealed by a panel of bioassays
International audience ; Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75–304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays – based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different ...
BASE
Estrogenicity of chemical mixtures revealed by a panel of bioassays
International audience ; Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75–304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays – based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
BASE
Estrogenicity of chemical mixtures revealed by a panel of bioassays
International audience ; Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75–304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays – based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
BASE