Effects of Trampling Limitation on Coastal Dune Plant Communities
In: Environmental management: an international journal for decision makers, scientists, and environmental auditors, Band 49, Heft 3, S. 534-542
ISSN: 1432-1009
8 Ergebnisse
Sortierung:
In: Environmental management: an international journal for decision makers, scientists, and environmental auditors, Band 49, Heft 3, S. 534-542
ISSN: 1432-1009
In: Williamson , J , Slade , E M , Luke , S H , Swinfield , T , Chung , A Y C , Coomes , D A , Heroin , H , Jucker , T , Lewis , O T , Vairappan , C S , Rossiter , S J & Struebig , M J 2021 , ' Riparian buffers act as microclimatic refugia in oil palm landscapes ' , Journal of Applied Ecology , vol. 58 , no. 2 , pp. 431-442 . https://doi.org/10.1111/1365-2664.13784
There is growing interest in the ecological value of set-aside habitats around rivers in tropical agriculture. These riparian buffers typically comprise forest or other non-production habitat, and are established to maintain water quality and hydrological processes, while also supporting biodiversity, ecosystem function and landscape connectivity. We investigated the capacity for riparian buffers to act as microclimatic refugia by combining field-based measurements of temperature, humidity and dung beetle communities with remotely sensed data from LiDAR across an oil palm dominated landscape in Borneo. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm plantations, with wider buffers characterised by conditions comparable to riparian sites in continuous logged forest. High vegetation quality and topographic sheltering were strongly associated with cooler and more humid microclimates in riparian habitats across the landscape. Variance in beetle diversity was also predicted by both proximity-to-edge and microclimatic conditions within the buffer, suggesting that narrow buffers amplify the negative impacts that high temperatures have on biodiversity. Synthesis and applications. Widely legislated riparian buffer widths of 20–30 m each side of a river may provide drier and less humid microclimatic conditions than continuous forest. Adopting wider buffers and maintaining high vegetation quality will ensure set-asides established for hydrological reasons bring co-benefits for terrestrial biodiversity, both now, and in the face of anthropogenic climate change.
BASE
There is growing interest in the ecological value of set‐aside habitats around rivers in tropical agriculture. These riparian buffers typically comprise forest or other non‐production habitat, and are established to maintain water quality and hydrological processes, while also supporting biodiversity, ecosystem function and landscape connectivity. We investigated the capacity for riparian buffers to act as microclimatic refugia by combining field‐based measurements of temperature, humidity and dung beetle communities with remotely sensed data from LiDAR across an oil palm dominated landscape in Borneo. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm plantations, with wider buffers characterised by conditions comparable to riparian sites in continuous logged forest. High vegetation quality and topographic sheltering were strongly associated with cooler and more humid microclimates in riparian habitats across the landscape. Variance in beetle diversity was also predicted by both proximity‐to‐edge and microclimatic conditions within the buffer, suggesting that narrow buffers amplify the negative impacts that high temperatures have on biodiversity. Synthesis and applications. Widely legislated riparian buffer widths of 20–30 m each side of a river may provide drier and less humid microclimatic conditions than continuous forest. Adopting wider buffers and maintaining high vegetation quality will ensure set‐asides established for hydrological reasons bring co‐benefits for terrestrial biodiversity, both now, and in the face of anthropogenic climate change.
BASE
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. ; The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 265171. ; Peer Reviewed
BASE
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. ; We thank the Hainich National Park administration as well as Felix Berthold and Carsten Beinhoff for support of this study and Gerald Kaendler and the Johann Heinrich von Thünen-Institut for providing access to the German National Forest Inventory data. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 265171. ; This is the final version of the article. It first appeared from the National Academy of Sciences via https://doi.org//10.1073/pnas.1517903113
BASE
In: https://www.repository.cam.ac.uk/handle/1810/254810
There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems. ; The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 265171. ; This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms11109
BASE
The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation.This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. ; This work was supported in part by West Virginia University under the United States Department of Agriculture (USDA) McIntire-Stennis Funds WVA00104 and WVA00105; U.S. National Science Foundation (NSF) Long-Term Ecological Research Program at Cedar Creek (DEB-1234162); the University of Minnesota Department of Forest Resources and Institute on the Environment; the Architecture and Environment Department of Italcementi Group, Bergamo (Italy); a Marie Skłodowska Curie fellowship; Polish National Science Center grant 2011/02/A/NZ9/00108; the French L'Agence Nationale de la Recherche (ANR) (Centre d'Étude de la Biodiversité Amazonienne: ANR-10-LABX-0025); the General Directory of State Forest National Holding DB; General Directorate of State Forests, Warsaw, Poland (Research Projects 1/07 and OR/2717/3/11); the 12th Five-Year Science and Technology Support Project (grant 2012BAD22B02) of China; the U.S. Geological Survey and the Bonanza Creek Long Term Ecological Research Program funded by NSF and the U.S. Forest Service (any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government); National Research Foundation of Korea (grant NRF-2015R1C1A1A02037721), Korea Forest Service (grants S111215L020110, S211315L020120 and S111415L080120) and Promising-Pioneering Researcher Program through Seoul National University (SNU) in 2015; Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment's Science and Innovation Group; the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 Biodiversity Exploratories; Chilean research grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1151495 and 11110270; Natural Sciences and Engineering Research Council of Canada (grant RGPIN-2014-04181); Brazilian Research grants CNPq 312075/2013 and FAPESC 2013/TR441 supporting Santa Catarina State Forest Inventory (IFFSC); the General Directorate of State Forests, Warsaw, Poland; the Bavarian State Ministry for Nutrition, Agriculture, and Forestry project W07; the Bavarian State Forest Enterprise (Bayerische Staatsforsten AöR); German Science Foundation for project PR 292/12-1; the European Union for funding the COST Action FP1206 EuMIXFOR; FEDER/ COMPETE/POCI under Project POCI-01-0145-FEDER-006958 and FCT–Portuguese Foundation for Science and Technology under the project UID/AGR/04033/2013; Swiss National Science Foundation grant 310030B_147092; the EU H2020 PEGASUS project (no 633814), EU H2020 Simwood project (no 613762); and the European Union's Horizon 2020 research and innovation program within the framework of the MultiFUNGtionality Marie Skłodowska-Curie Individual Fellowship (IF-EF) under grant agreement 655815. The expeditions in Cameroon to collect the data were partly funded by a grant from the Royal Society and the Natural Environment Research Council (UK) to Simon L. Lewis.
BASE
The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.
BASE