"Pride in Tobacco": Roycroft's Warehouse, 1982
In: Southern cultures, Band 21, Heft 4, S. 67-80
ISSN: 1534-1488
16 Ergebnisse
Sortierung:
In: Southern cultures, Band 21, Heft 4, S. 67-80
ISSN: 1534-1488
In: Economics of education review, Band 20, Heft 6, S. 577-588
ISSN: 0272-7757
In: Contemporary economic policy: a journal of Western Economic Association International, Band 40, Heft 2, S. 304-322
ISSN: 1465-7287
AbstractWe use administrative data to provide evidence that notification of work‐related overpayment debt reduces subsequent work activity by Social Security Disability Insurance beneficiaries. We exploit randomness in the timing of the overpayment debt notification by comparing beneficiary work activity before and after notification. Our results show that the share of overpaid beneficiaries engaging in substantial work activity declined by 8% over the 2‐month period following an overpayment notification, which reduced to 4% after accounting for the ongoing declining trend in work activity. This evidence that overpayment debt notification discourages work highlights the need for policies to curtail overpayments.
In: Economics of education review, Band 27, Heft 2, S. 140-148
ISSN: 0272-7757
This work was supported by the Biotechnology and Biological Sciences Research Council and The James Hutton Institute (JHI). The James Hutton Institute receives funding from the Scottish Government. This work benefited from interactions promoted by COST Action project FA 1208 and a JHI training grant. Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. Publisher PDF Peer ...
BASE
In: Social Security Bulletin. 84(1): 49-67
SSRN
Each author is, or was, at the time of the work, a paid employee of their affiliated organization. The James Hutton Institute receives funding from the Scottish Government. TK is funded by JSPS KAKENHI Grant Numbers 20353659 and 23248024 Date of Acceptance: 27/11/2013 ; Plant-parasitic nematodes cause considerable damage to global agriculture. The ability to parasitize plants is a derived character that appears to have independently emerged several times in the phylum Nematoda. Morphological convergence to feeding style has been observed, but whether this is emergent from molecular convergence is less obvious. To address this, we assess whether genomic signatures can be associated with plant parasitism by nematodes. In this review, we report genomic features and characteristics that appear to be common in plant-parasitic nematodes while absent or rare in animal parasites, predators or free-living species. Candidate horizontal acquisitions of parasitism genes have systematically been found in all plant-parasitic species investigated at the sequence level. Presence of peptides that mimic plant hormones also appears to be a trait of plant-parasitic species. Annotations of the few genomes of plant-parasitic nematodes available to date have revealed a set of apparently species-specific genes on every occasion. Effector genes, important for parasitism are frequently found among those species-specific genes, indicating poor overlap. Overall, nematodes appear to have developed convergent genomic solutions to adapt to plant parasitism. ; Publisher PDF ; Peer reviewed
BASE
The potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis are major pests of potatoes. The G. pallida (and G. rostochiensis) life cycle includes both diapause and quiescent stages. Nematodes in dormancy (diapause or quiescent) are adapted for long-term survival and are more resistant to nematicides. This study analysed the mechanisms underlying diapause and quiescence. The effects of several compounds (8Br-cGMP, oxotremorine and atropine) on the activation of hatching were studied. The measurements of some morphometric parameters in diapaused and quiescent eggs after exposure to PRD revealed differences in dorsal gland length, subventral gland length and dorsal gland nucleolus. In addition, the expression of 2 effectors (IVg9 and cellulase) was not induced in diapaused eggs in water or PRD, while expression was slightly induced in quiescent eggs. Finally, we performed a comparative study to identify orthologues of C. elegans diapause related genes in plant-parasitic nematodes (G. pallida, Meloidogyne incognita, M. hapla and Bursaphelenchus xylophilus). This analysis suggested that it was not possible to identify G. pallida orthologues of the majority of C. elegans genes involved in the control of dauer formation. All these data suggest that G. pallida may use different mechanisms to C. elegans in regulating the survival stage. ; The authors thank the Spanish Ministry of Education for funding to the fi rst author under the ' Ayudas para la movilidadpostdoctoralen centrosextranjeros ' scheme. The James Hutton Institute receives funding from the Scottish Government. Statistical advice from Jim McNicol is gratefully acknowledged (BIOSS, UK). ; Peer reviewed
BASE
This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and The James Hutton Institute through a PhD studentship to SE-vdA. The James Hutton Institute receives funding from the Scottish Government Rural and Environment Science and Analytical Services division. SE-vdA is supported by BBSRC grant BB/M014207/1. ; Sedentary Plant-Parasitic Nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active "feeding sites". The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-terminally Encoded Peptide (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant-parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests CEPs likely evolved de novo in R. reniformis. We have characterised the first member of this large gene family (RrCEP1), demonstrating its significant upregulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of upregulating plant nitrate transporter (AtNRT2.1) expression, while simultaneously reducing primary root elongation. When a non-CEP containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment a smaller feeding site is produced. We hypothesise that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species; 1) increasing host nitrate uptake while 2) limiting the size of the syncytial feeding site produced. ; Publisher PDF ; Peer reviewed
BASE
Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules). ; The James Hutton Institute receives funding from the Scottish Government. The authors thank the Education Spanish Ministry for the grant provided for the first author under the "Ayudas para la movilidad postdoctoral en centros extranjeros" scheme. ; Peer reviewed
BASE
The authors thank the Education Spanish Ministry for the grant provided for the first author under the "Ayudas para la movilidad postdoctoral en centros extranjeros'' scheme. The James Hutton Institute receives funding from the Scottish Government. ; Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules). ; Publisher PDF ; Peer reviewed
BASE
This research and HN were funded by the Consultative Group for International Agricultural Research Program on rice-agrifood systems (CRP-RICE, 2017–2022), the French National Institute for Sustainable Development (IRD–France), and the International Join Laboratory (LMI-Rice 2) in Vietnam. Funding for some parts of this work was also provided through an SFC ODA GCRF award via the University of St Andrews, United Kingdom. The James Hutton Institute receives funding from the Rural and Environment Science and Analytical Services Division of the Scottish Government. ; Meloidogyne graminicola is a widely spread nematode pest of rice that reduces crop yield up to 20% on average in Asia, with devastating consequences for local and global rice production. Due to the ban on many chemical nematicides and the recent changes in water management practices in rice agriculture, an even greater impact of M. graminicola can be expected in the future, stressing the demand for the development of new sustainable nematode management solutions. Recently, a source of resistance to M. graminicola was identified in the Oryza sativa japonica rice variety Zhonghua 11 (Zh11). In the present study, we examine the genetics of the Zh11 resistance to M. graminicola and provide new insights into its cellular and molecular mechanisms. The segregation of the resistance in F2 hybrid populations indicated that two dominant genes may be contributing to the resistance. The incompatible interaction of M. graminicola in Zh11 was distinguished by a lack of swelling of the root tips normally observed in compatible interactions. At the cellular level, the incompatible interaction was characterised by a rapid accumulation of reactive oxygen species in the vicinity of the nematodes, accompanied by extensive necrosis of neighbouring cells. The expression profiles of several genes involved in plant immunity were analysed at the early stages of infection during compatible (susceptible plant) and incompatible (resistant plant) interactions. Notably, the ...
BASE
[Background] Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. ; [Results] In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. ; [Conclusions] The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit. ; This work was supported by JSPS KAKENHI Grant Numbers 20353659 and 23248024. JEPR and IJT were supported by JSPS Postdoctoral Fellowship Program for Foreign Researchers. The James Hutton Institute receives funding from the Scottish Government. Part of this work was funded by ERASMUS MUNDUS programme 2008–102 (EUMAINE).
BASE
The James Hutton Institute receives funding from the Scottish Government Rural and Environment Science and Analytical Services division. YM was funded through a BOF Ph.D. scholarship (Bijzonder Onderzoeksfonds, Ghent University). This collaboration was supported by an International Exchanges Award (IE110776) from the Royal Society and benefited from interactions funded by COST Action FA1208. ; The white potato cyst nematode, Globodera pallida, is an obligate biotrophic pathogen of a limited number of Solanaceous plants. Like other plant pathogens, G. pallida deploys effectors into its host that manipulate the plant to the benefit of the nematode. Genome analysis has led to the identification of large numbers of candidate effectors from this nematode, including the cyst nematode-specific SPRYSEC proteins. These are a secreted subset of a hugely expanded gene family encoding SPRY domain-containing proteins, many of which remain to be characterized. We investigated the function of one of these SPRYSEC effector candidates, GpSPRY-414-2. Expression of the gene encoding GpSPRY-414-2 is restricted to the dorsal pharyngeal gland cell and reducing its expression in G. pallida infective second stage juveniles using RNA interference causes a reduction in parasitic success on potato. Transient expression assays in Nicotiana benthamiana indicated that GpSPRY-414-2 disrupts plant defenses. It specifically suppresses effector-triggered immunity (ETI) induced by co-expression of the Gpa2 resistance gene and its cognate avirulence factor RBP-1. It also causes a reduction in the production of reactive oxygen species triggered by exposure of plants to the bacterial flagellin epitope flg22. Yeast two-hybrid screening identified a potato cytoplasmic linker protein (CLIP)-associated protein (StCLASP) as a host target of GpSPRY-414-2. The two proteins co-localize in planta at the microtubules. CLASPs are members of a conserved class of microtubule-associated proteins that contribute to microtubule stability and growth. However, disruption of the microtubule network does not prevent suppression of ETI by GpSPRY-414-2 nor the interaction of the effector with its host target. Besides, GpSPRY-414-2 stabilizes its target while effector dimerization and the formation of high molecular weight protein complexes including GpSPRY-414-2 are prompted in the presence of the StCLASP. These data indicate that the nematode effector GpSPRY-414-2 targets the microtubules to facilitate infection. ; Publisher PDF ; Peer reviewed
BASE
Work described in this article was partly funded by the Rural & Environment Science & Analytical Services Division of the Scottish Government and by two grants from the French National Research Agency (ANR) under the Genoplante program (project ANR-PCS-08-GENO-166 NEMATARGETS) and the JCJC program (project ANR-13-JSV7-0006—ASEXEVOL). This work was facilitated by interactions funded through COST action FA1208 and Royal Society International Exchange award IE130707. Sebastian Eves-van den Akker is supported by Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/M014207/1. ; Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. ; Publisher PDF ; Peer reviewed
BASE