The rapid growth of the discipline of aquatic ecology has been driven both by scientific interest in the complexities of aquatic ecosystems and by their enormous environmental importance and sensitivity. The Structuring Role of Submerged Macrophytes in Lakes focuses on the remarkably diverse roles played by underwater plants. The book is divided into three parts: 10 thematic chapters, followed by 18 case studies, concluded by three integrative chapters. The topics range from macrophytes as fish food to macrophytes as mollusk and microbe habitat. The consistent theme is the structuring role of plants in lakes. The book will be of interest to aquatic ecologists as well as limnologists, ecosystem ecologists, microbial ecologists, fish biologists, and environmental managers with responsibilities that include lakes
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 228, S. 113044
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 227, S. 112933
Despite its well-established negative impacts on society and biodiversity, eutrophication continues to be one of the most pervasive anthropogenic influence along the freshwater to marine continuum. The interaction between eutrophication and climate change, particularly climate warming, was explicitly focused upon a decade ago in the paper by Moss et al. (2011), which called for an integrated response to both problems, given their apparent synergy. In this review, we summarise advances in the theoretical framework and empirical research on this issue and analyse the current understanding of the major drivers and mechanisms by which climate change can enhance eutophication, and vice versa, with a particular focus on shallow lakes. Climate change can affect nutrient loading, through changes at the catchment and landscape levels by affecting hydrological patterns and fire frequency, and through temperature effects on nutrient cycling. Biotic communities and their interactions can also be directly and indirectly affected by climate change, leading to an overall weakening of resilience to eutrophication impacts. Increasing empirical evidence now indicates several mechanisms by which eutrophying aquatic systems can increasingly act as important sources of greenhouse gases to the atmosphere, particularly methane. We also highlight potential feedbacks between eutrophication, cyanobacterial blooms, and climate change. Facing both challenges at the same time is more pressing than ever. Meaningful and strong measures at the landscape and water body levels are therefore required if we are to ensure ecosystem resilience and safe water supply, conserving biodiversity, and decreasing the carbon footprint of freshwaters. ; European Union's Horizon 2020- grant agreement No 869296 ; The PONDERFUL Project
Abstract Background Groundwater abstraction can cause a decline in the water table, and thereby affects surface streamflow connected to the aquifer, which may impair the sustainability of both the water resource itself and the ecosystem that it supports. To quantify the streamflow response to groundwater abstractions for either irrigation or drinking water at catchment scale and compared the performance of the widely used semi-distributed hydrological model SWAT and an recently integrated surface–subsurface model SWAT–MODFLOW, we applied both SWAT and SWAT–MODFLOW to a groundwater-dominated catchment in Denmark and tested a range of groundwater abstraction scenarios.
Results To accommodate the study area characteristics, the SWAT–MODFLOW model complex was further developed to enable the Drain package and an auto-irrigation routine to be used. A PEST (parameter estimation by sequential testing)-based approach which enables simultaneous calibration of SWAT and MODFLOW parameters was developed to calibrate SWAT–MODFLOW. Both models demonstrated generally good statistical performance for the temporal pattern of streamflow, with better R2 and NSE (Nash–Sutcliffe efficiency) for SWAT–MODFLOW but slightly better PBIAS (percent bias) for SWAT. Both models indicated that drinking water abstractions caused some degree of streamflow depletion, while abstractions for returned irrigation led to a slight total flow increase, but may influence the hydrology outside the catchment. However, the streamflow decrease caused by drinking water abstractions simulated by SWAT was unrealistically low, and the streamflow increase caused by irrigation abstractions was exaggerated compared with SWAT–MODFLOW.
Conclusion We conclude that the SWAT–MODFLOW model produces much more realistic signals relative to the SWAT model when quantifying the streamflow response to groundwater abstractions for irrigation or drinking water; hence, it has great potential to be a useful tool in the management of water resources in groundwater-dominated catchments. With further development of SWAT–MODFLOW and the PEST-based approach developed for its calibration, this study would broaden the SWAT–MODFLOW application and benefit catchment managers.