Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers
Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (g(m,norm) approximate to 11 S cm(-1)) and electron mobility x volumetric capacitance (mu C* approximate to 26 F cm(-1) V-1 s(-1)), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices. ; Funding Agencies|Knut and Alice Wallenberg foundationKnut & Alice Wallenberg Foundation; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2016-03979, 2020-03243]; AForsk [18-313, 19-310]; Olle Engkvists Stiftelse [204-0256]; VINNOVAVinnova [2020-05223]; European Commission through the Marie Sklodowska-Curie project HORATES [GA-955837]; FET-OPEN project MITICS [GA-964677]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; National Research Foundation of KoreaNational Research Foundation of Korea [NRF-2019R1A2C2085290, 2019R1A6A1A11044070]; National Science FoundationNational Science Foundation (NSF) [DMR-2003518]