In: Umweltwissenschaften und Schadstoff-Forschung: UWSF ; Zeitschrift für Umweltchemie und Ökotoxikologie ; Organ des Verbandes für Geoökologie in Deutschland (VGöD) und der Eco-Informa, Band 7, Heft 5, S. 256-260
With molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH. In preataxic subjects, NfL levels increased with proximity to the individual expected onset of ataxia, with significant NfL elevations already 7.5 years before onset. Cross-sectional NfL levels correlated with both disease severity and longitudinal disease progression. Blood NfL and pNfH increases in human SCA3 were each paralleled by similar changes in SCA3 knock-in mice, here also starting already at the presymptomatic stage, closely following ataxin-3 aggregation and preceding Purkinje cell loss in the brain. Blood neurofilaments, particularly NfL, might thus provide easily accessible, cross-species validated biomarkers in both ataxic and preataxic SCA3, associated with earliest neuropathological changes, and serve as progression, proximity-to-onset and, potentially, treatment-response markers in both human and preclinical SCA3 trials. ; Acknowledgements: This work was supported by the Horizon 2020 research and innovation programme (grant 779257 Solve-RD to MS and RS), the National Ataxia Foundation (grant to CW and MS), the Wilhelm Vaillant Stiftung (grant to CW), the EU Joint Programme—Neurodegenerative Disease Research (JPND) through participating national funding agencies, and the European Union's Horizon 2020 research and innovation programme under grant agreement No 643417. BM was supported in part from the grant NKFIH 119540. HJ was funded by the Medical Faculty of the University of Heidelberg. CB was funded by the University of Basel (PhD Program in Health Sciences). The funding sources had no role in the study design, data collection, data analysis, data interpretation or writing of the manuscript.
Objective To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). Methods Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing?based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ?2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. Results Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ?1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ?9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C?like progression (SARA points 2.5?5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. Conclusions RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. Classification of Evidence This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC. ; FUNDING: Study Funding This work was supported via the European Union's Horizon 2020 research and innovation program by the BMBF under the frame of the E-Rare-3 network PREPARE (01GM1607; to M. Synofzik,M.A., H.P., B.P.v.d.W.), by the DFG under the frame of EJP-RD network PROSPAX (No. 441409627; M. Synofzik, B.P.v.d.W., A.N.B.), and grant 779257 "Solve-RD" (toM. Synofzik, B.P.v.d.W.). B.P.v.d.W. receives additional research support from ZonMW, Hersenstichting, Gossweiler Foundation, uniQure, and Radboud University Medical Centre. T.B.H. was supported by the DFG (No 418081722). A.T. receives funding from the University of T¨ubingen, medical faculty, for the Clinician Scientist Program grant 439-0-0. A.C. thanks Medical Research Council, MR/T001712/1) and Fondazione CARIPLO (2019-1836) for grant support. L.S., T.K., B.P.v.d.W., and M. Synofzik are members of the European Reference Network for Rare Neurological Diseases, project 739510. A.N.B. is supported by the Suna and Inan Kirac Foundation and Koç University School of Medicine.