FHS (Framingham Heart Study) is funded by National Institutes of Health (NIH) contract N01-HC-25195 and HHSN268201500001I and administered by Boston University. The laboratory work for this investigation was funded by the Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), NIH, and an NIH Director's Challenge Award (Dr Levy, Principal Investigator). The analytic component of this project was funded by the Division of Intramural Research, NHLBI, and the Center for Information Technology, NIH, Bethesda, MD. This study used the computational resources of the Biowulf system at the NIH, Bethesda, MD (https://hpc.nih.gov/). Dr Mendelson is partly supported by the Tommy Kaplan Fund, Boston Children's Hospital. Dr Liang is partially supported by NIH grant P30 DK46200. Dr Ingelsson is supported by Knut and Alice Wallenberg (KAW) Foundation, Swedish Research Council (VR; grant no. 2012-1397), Swedish Heart-Lung Foundation (20120197) NIH grants 1R01DK106236-01A1 and 1R01HL135313-01. Genome-wide DNA methylation profiling in PIVUS was funded by the Uppsala University Hospital (ALF-medel) and was performed by the SNP&SEQ Technology Platform in Uppsala. The facility is part of the National Genomics Infrastructure Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also supported by the VR and the KAW Foundation. Phenotype collection in the LBC1921 (Lothian Birth Cohorts of 1921) study was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society and The Chief Scientist Office of the Scottish Government. Phenotype collection in the LBC1936 (Lothian Birth Cohorts of 1936) study was supported by Age UK (The Disconnected Mind project). Methylation typing was supported by the Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE; Pilot Fund award), Age UK, The Wellcome Trust Institutional Strategic Support Fund, The University of Edinburgh, and The University of Queensland. Drs Marioni, Starr, and Deary are members of the University of Edinburgh CCACE. CCACE is supported by funding from the BBSRC, the Medical Research Council and the University of Edinburgh as part of the cross-council Lifelong Health and Wellbeing initiative (MR/K026992/1). Research reported in this publication was supported by National Health and Medical Research Council (NHMRC) project grant 1010374 and an NHMRC Fellowship to Dr McRae (1083656). The GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) study was supported by NIH National Heart, Lung and Blood Institute grant R01 HL104135-01. The MuTHER study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007–2013). The study as part of TwinsUK also receives support from the Medical Research Council, European Union, National Institute for Health Research-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. Dr Spector is a holder of an European Research Council Advanced Principal Investigator award.
Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (P$_v$), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (P$_m$). Correlations between P$_v$ and P$_m$ were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When P$_v$ and P$_m$ were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the P$_v$ distribution (P$_{binomial}$ <0.05). SNPs from the top 1% of the P$_m$ distribution for BMI had more significant Pv values (P$_{Mann-Whitney}$ = 1.46×10$^{-5}$), and the odds ratio of SNPs with nominally significant (<0.05) P$_m$ and P$_v$ was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (P$_{int}$<0.05) were enriched with nominally significant P$_v$ values (P$_{binomial}$ = 8.63×10$^{-9}$ and 8.52×10$^{-7}$ for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them. ; This research was undertaken as part of a research program supported by the European Commission (CoG-2015_681742_NASCENT), Swedish Research Council (Distinguished Young Researchers Award in Medicine), Swedish HeartLung Foundation, and the Novo Nordisk Foundation, all grants to PWF. DS is supported by the Swedish Research Council International Postdoc Fellowship (4.1-2016-00416). TVV is supported by the Novo Nordisk Foundation Postdoctoral Fellowship within Endocrinology/ Metabolism at International Elite Research Environments via NNF16OC0020698. TWW was supported by the grants "Bundesministerium fur Bildung und Forschung": BMBF-01ER1206, BMBF- 01ER1507. APM is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). LAC acknowledges funding for the Framingham Heart Study: This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195 and Contract No. HHSN268201500001I) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This research was partially supported by grant R01-DK089256 from the National Institute of Diabetes and Digestive and Kidney Diseases (MPIs: I.B. Borecki, LAC, K. North). TOK was supported by the Danish Council for Independent Research (DFF—1333-00124) and Sapere Aude program grant (DFF—1331-00730B). RM would like to acknowledge the High Performance Computing Center of University of Tartu. EGCUT was supported by EU H2020 grants 692145, 676550, 654248, 692065, Estonian Research Council Grant IUT20-60, and PerMed I NIASC, EIT—Health and European Union through the European Regional Development Fund (Project No, 2014-2020.4.01.15-0012 GENTRANSMED).
This work was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (grant 01ZX1313A-2014). The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647. Sample collection in the Cardiogenics Consortium (http://www.cardiogenics.eu/web/) was funded by the 6th Framework Program of the European Union (LSHM-CT-2006-037593). We thank all the participants and clinicians involved in the recruitment process at Cambridge and Leicester (UK), Luebeck and Regensburg (Germany), and Paris (France). CATHGEN was supported by NIH grants HL095987 and HL101621. The Cleveland Clinic Gene Bank study was funded by P01HL076491 (to S.L.H). EGCUT was supported by Estonian Research Council grant no. IUT20-60 and Research Roadmap grant no. 3.2.0304.11-0312 and by University Tartu grant no. ARENG SP1GV. The FGENTCARD-Functional Genomic diagnostic tools for coronary artery disease project was funded by an EU FP6 award. We thank the patients for agreeing to participate in the study. We thank Sonia Youhanna, Nour Moukalled and Bariaa Khalil for their help with subject recruitment and data collection. The work of FINCAVAS was supported by the Competitive Research Funding of the Tampere University Hospital (Grant 9M048 and 9N035), the Finnish Cultural Foundation, the Finnish Foundation for Cardiovascular Research, the Emil Aaltonen Foundation, Finland, and the Tampere Tuberculosis Foundation. The authors thank the staff of the Department of Clinical Physiology for collecting the exercise test data. The GerMIFS studies were supported by grants from the German Federal Ministry of Education and Research (BMBF) within the framework of NGFN and NGFN-plus (Atherogenomics) and e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014), the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), and the European Union Sixth Framework Programme FP6 (under grant agreement FP6-LIFESCIHEALTH (Cardiogenics)) and the Seventh Framework Programme FP7/2007-2013 under grant agreement n° HEALTH-F2-2013-601456 (CVgenes-at-target). The Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK Medical Research Council (MRC), British Heart Foundation, Merck and Co (manufacturers of simvastatin), and Roche Vitamins Ltd (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. Jemma C. Hopewell acknowledges support from the British Heart Foundation (FS/14/55/30806). HPS acknowledges the National Blood Service (NBS) donors and UK Twin study for using as population controls. A full list of the investigators who contributed to the generation of the NBS data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 07611. The UK Twin study was funded by the Wellcome Trust; European Community"s Seventh Framework Programme (FP7/2007–2013). The Helsinki Sudden Death Study (HSDS) was financially supported by EU's 7th Framework Programme (grant no. 201668 for AtheroRemo), the Tampere University Foundation, the Tampere University Hospital Medical Funds (grants X51001, 9M048 and 9N035 for Terho Lehtimäki, the Emil Aaltonen Foundation (Terho Lehtimäki, the Finnish Foundation of Cardiovascular Research (Terho Lehtimäki, Pekka J. Karhunen), the Pirkanmaa Regional Fund of the Finnish Cultural Foundation, the Yrjö Jahnsson Foundation, and the Tampere Tuberculosis Foundation (Terho Lehtimäki). LIFE-Heart is a part of the LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig. LIFE is funded by means of the European Union, by the European Regional Development Fund (ERDF) and by means of the Free State of Saxony within the framework of the excellence initiative. The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust (084723/Z/08/Z), the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing (G51). We thank the participants and research staff who made the study possible. LURIC was supported by the 7th Framework Program (integrated project AtheroRemo, grant agreement number 201668 and RiskyCAD, grant agreement number 305739) of the European Union and by the INTERREG IV Oberrhein Program (Project A28, Genetic mechanisms of cardiovascular diseases) with support from the European Regional Development Fund (ERDF) and the Wissenschaftsoffensive TMO. We extend our appreciation to the participants of the LURIC study and thank the LURIC study team who were either temporarily or permanently involved in patient recruitment as well as sample and data handling, in addition to the laboratory staff at the Ludwigshafen General Hospital and the Universities of Freiburg and Ulm, Germany. The MIGen study was funded by R01HL087676 from the US National Heart, Lung, and Blood Institute. The Mount Sinai IPM Biobank Program is supported by The Andrea and Charles Bronfman Philanthropies. It was in part supported by NHGRI U01HG007417. OHGS_A2, OHGS_B2, and OHGS_C2 were funded by Canadian Institutes of Health Research (# MOP-2380941 to R.M.), (#MOP82810, MOP77682 to R.R., A.F.S. & R.M.); Canada Foundation for Innovation (#11966 to R.R., R.M. & A.F.S.; Heart & Stroke Foundation of Canada (#NA6001, #NA6650 to R.M). PIVUS was supported by Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. PROCARDIS was supported by the European Community Sixth Framework Program (LSHM-CT- 2007-037273), AstraZeneca, the British Heart Foundation, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Heart-Lung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the Foundation for Strategic Research and the Stockholm County Council (560283). Research in SDS was partly supported by NIH grants -R01DK082766 funded by the National Institute of Diabetes and Digestive and Kidney Diseases and NOT-HG-11-009 funded by National Genome Research Institute, and VPR Bridge grant from University of Oklahoma Health Sciences Center, Oklahoma City, USA. Recruitment for THISEAS was partially funded by a research grant (PENED 2003) from the Greek General Secretary of Research and Technology; we thank all the dieticians and clinicians for their contribution to the project. TwinGene was supported by grants from the Ministry for Higher Education, the Swedish Research Council (M-2005-1112 and 2009-2298), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH grant DK U01-066134, Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www. genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. ULSAM was supported by Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. Recruitment for the WTCCC study was funded by the British Heart Foundation and genotyping by the Wellcome Trust. Themistocles L. Assimes was supported by an NIDDK career development award DK088942. Panos Deloukas's work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute for Health Research. Analysis was partly supported by BHF grant (to Panos Deloukas) RG/14/5/30893. Martin Farrall and Hugh Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z) and Martin Farrall, Hugh Watkins and Theodosios Kyriakou, the BHF Centre of Research Excellence. Anuj Goel, Hugh Watkins and Theodosios Kyriakou acknowledge European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. HEALTH-F2-2013-601456 (CVGenes@Target) & and Anuj Goel, the Wellcome Trust Institutional strategic support fund. The UK Twin study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007- 2013). PoBI samples from the Wellcome Trust funded People of the British Isles project. Sekar Kathiresan is supported by the Donovan Family Foundation, Fondation Leducq, MGH Research Scholar Award, and R01 HL107816. Andrew P. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science, funded under grant WT098017. Christopher P. Nelson and Nilesh J. Samani are funded by the British Heart Foundation and Nilesh J. Samani is a UK NIUHR Senior Investigator. Christopher P. Nelson and Nilesh J. Samani are funded by the British Heart Foundation and Nilesh J. Samani is a UK NIUHR Senior Investigator. Samuli Ripatti was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No. 213506 and 129680), Academy of Finland (Grant No. 251217 and 285380), the Finnish foundation for Cardiovascular Research, the Sigrid Juselius Foundation and the European Community's Seventh Framework Programme (FP7/2007-2013) through the BioSHaRE-EU (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project, grant agreement 261433. Alexandre F. R. Stewart is supported by operating grants from the Canadian Institute of Health Research and Natural Sciences and Engineering Research Council of Canada. Hong-Hee Won is supported by a postdoctoral award from the American Heart Association (15POST23280019).
BACKGROUND: Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES: The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS: We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS: Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 × 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 × 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0.994), which was statistically different from the observational estimate (p = 1.6 × 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS: Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD. ; The individual study sponsor(s) had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Dr. Isgum is supported by research grants from Pie Medical Imaging, 3Mensio Medical Imaging B.V., the NWO and Foundation for Technological Sciences under Project 12726, The Netherlands Organization for Health Research and Development, and the Dutch Cancer Society. Dr. Arpegård has received funding through the Stockholm County Council (combined clinical residency and PhD training program). Dr. Amouyel has received personal fees from Servier, Hoffman Laroche, Total, Genoscreen, Alzprotect, Fondation Plan Alzheimer, and Takeda outside of the submitted work; and has shares in Genoscreen. Dr. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science under grant number WT098017. Dr. Worrall has received compensation for his role as deputy editor of the Journal of Neurology; and has received National Institutes of Health funding through the National Institute of Neurological Disorders and Stroke (U-01 NS069208) and National Human Genome Research Institute (U-01 HG005160). Dr. Samani is supported by the British Heart Foundation (BHF); and is a National Institute for Health Research Senior Investigator. Dr. Nelson is supported by the BHF. Dr. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA; Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. Dr. Patel is supported by a BHF Intermediate Fellowship. Dr. Koenig has received funds through NGFNplus, project number 01GS0834; has received research grants from Abbott, Roche Diagnostics, Beckmann, and Singulex; has received honorarium for lectures from AstraZeneca, Novartis, Merck Sharp & Dohme, Amgen, and Actavis; and has served as a consultant for Novartis, Pfizer, The Medicines Company, Amgen, AstraZeneca, Merck Sharp & Dohme, and GlaxoSmithKline. Dr. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Dr. Svensson has received a grant from the Swedish Society of Medicine (SLS-412071). Dr. Kivimaki has received funding through the Medical Research Council (K013351), Economic and Social Research Council, and National Institutes of Health (HL36310). Dr. Dehghan is supported by a Netherlands Organization for Scientific Research (NWO) grant (VENI, 916.12.154) and the EUR Fellowship; and has received consultancy and research support from Metagenics Inc. (outside the scope of this work). Dr. Ingelsson is supported by grants from Göran Gustafsson Foundation, Swedish Heart-Lung Foundation (20140422), Knut and Alice Wallenberg Foundation (Knut och Alice Wallenbergs Stiftelse), European Research Council (ERC-StG-335395), Swedish Diabetes Foundation (Diabetesfonden; grant no. 2013-024), and the Swedish Research Council (VR; grant no. 2012-1397). Dr. de Bakker is an employee of Vertex Pharmaceuticals. Dr. Ärnlöv was funded by the Swedish Research Council (2012-1727, 2012-2215), Swedish Heart-Lung Foundation, Thuréus Foundation, the Marianne and Marcus Wallenberg Foundation, Dalarna University, and Uppsala University. Dr. Asselbergs is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals National Institute for Health Research Biomedical Research Centre. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° HEALTH-F2-2013-601456 (CVgenes-at-target). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. ; Peer-reviewed ; Publisher Version
Supplementary information accompanies this paper at http://www.nature.com/srep ; In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD. ; This work was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (grant 01ZX1313A-2014). The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647. Sample collection in the Cardiogenics Consortium (http://www.cardiogenics.eu/web/) was funded by the 6th Framework Program of the European Union (LSHM-CT-2006-037593). We thank all the participants and clinicians involved in the recruitment process at Cambridge and Leicester (UK), Luebeck and Regensburg (Germany), and Paris (France). CATHGEN was supported by NIH grants HL095987 and HL101621. The Cleveland Clinic Gene Bank study was funded by P01HL076491 (to S.L.H). EGCUT was supported by Estonian Research Council grant no. IUT20-60 and Research Roadmap grant no. 3.2.0304.11-0312 and by University Tartu grant no. ARENG SP1GV. The FGENTCARD-Functional Genomic diagnostic tools for coronary artery disease project was funded by an EU FP6 award. We thank the patients for agreeing to participate in the study. We thank Sonia Youhanna, Nour Moukalled and Bariaa Khalil for their help with subject recruitment and data collection. The work of FINCAVAS was supported by the Competitive Research Funding of the Tampere University Hospital (Grant 9M048 and 9N035), the Finnish Cultural Foundation, the Finnish Foundation for Cardiovascular Research, the Emil Aaltonen Foundation, Finland, and the Tampere Tuberculosis Foundation. The authors thank the staff of the Department of Clinical Physiology for collecting the exercise test data. The GerMIFS studies were supported by grants from the German Federal Ministry of Education and Research (BMBF) within the framework of NGFN and NGFN-plus (Atherogenomics) and e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014), the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), and the European Union Sixth Framework Programme FP6 (under grant agreement FP6-LIFESCIHEALTH (Cardiogenics)) and the Seventh Framework Programme FP7/2007-2013 under grant agreement n° HEALTH-F2-2013-601456 (CVgenes-at-target). The Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK Medical Research Council (MRC), British Heart Foundation, Merck and Co (manufacturers of simvastatin), and Roche Vitamins Ltd (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. Jemma C. Hopewell acknowledges support from the British Heart Foundation (FS/14/55/30806). HPS acknowledges the National Blood Service (NBS) donors and UK Twin study for using as population controls. A full list of the investigators who contributed to the generation of the NBS data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 07611. The UK Twin study was funded by the Wellcome Trust; European Community"s Seventh Framework Programme (FP7/2007–2013). The Helsinki Sudden Death Study (HSDS) was financially supported by EU's 7th Framework Programme (grant no. 201668 for AtheroRemo), the Tampere University Foundation, the Tampere University Hospital Medical Funds (grants X51001, 9M048 and 9N035 for Terho Lehtimäki, the Emil Aaltonen Foundation (Terho Lehtimäki, the Finnish Foundation of Cardiovascular Research (Terho Lehtimäki, Pekka J. Karhunen), the Pirkanmaa Regional Fund of the Finnish Cultural Foundation, the Yrjö Jahnsson Foundation, and the Tampere Tuberculosis Foundation (Terho Lehtimäki). LIFE-Heart is a part of the LIFE – Leipzig Research Center for Civilization Diseases, Universität Leipzig. LIFE is funded by means of the European Union, by the European Regional Development Fund (ERDF) and by means of the Free State of Saxony within the framework of the excellence initiative. The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust (084723/Z/08/Z), the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing (G51). We thank the participants and research staff who made the study possible. LURIC was supported by the 7th Framework Program (integrated project AtheroRemo, grant agreement number 201668 and RiskyCAD, grant agreement number 305739) of the European Union and by the INTERREG IV Oberrhein Program (Project A28, Genetic mechanisms of cardiovascular diseases) with support from the European Regional Development Fund (ERDF) and the Wissenschaftsoffensive TMO. We extend our appreciation to the participants of the LURIC study and thank the LURIC study team who were either temporarily or permanently involved in patient recruitment as well as sample and data handling, in addition to the laboratory staff at the Ludwigshafen General Hospital and the Universities of Freiburg and Ulm, Germany. The MIGen study was funded by R01HL087676 from the US National Heart, Lung, and Blood Institute. The Mount Sinai IPM Biobank Program is supported by The Andrea and Charles Bronfman Philanthropies. It was in part supported by NHGRI U01HG007417. OHGS_A2, OHGS_B2, and OHGS_C2 were funded by Canadian Institutes of Health Research (# MOP-2380941 to R.M.), (#MOP82810, MOP77682 to R.R., A.F.S. & R.M.); Canada Foundation for Innovation (#11966 to R.R., R.M. & A.F.S.; Heart & Stroke Foundation of Canada (#NA6001, #NA6650 to R.M). PIVUS was supported by Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. PROCARDIS was supported by the European Community Sixth Framework Program (LSHM-CT- 2007-037273), AstraZeneca, the British Heart Foundation, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Heart-Lung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the Foundation for Strategic Research and the Stockholm County Council (560283). Research in SDS was partly supported by NIH grants -R01DK082766 funded by the National Institute of Diabetes and Digestive and Kidney Diseases and NOT-HG-11-009 funded by National Genome Research Institute, and VPR Bridge grant from University of Oklahoma Health Sciences Center, Oklahoma City, USA. Recruitment for THISEAS was partially funded by a research grant (PENED 2003) from the Greek General Secretary of Research and Technology; we thank all the dieticians and clinicians for their contribution to the project. TwinGene was supported by grants from the Ministry for Higher Education, the Swedish Research Council (M-2005-1112 and 2009-2298), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH grant DK U01-066134, Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. ULSAM was supported by Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC Starting Grant), Swedish Diabetes Foundation (grant no. 2013-024), Swedish Research Council (grant no. 2012-1397), and Swedish Heart-Lung Foundation (20120197). We thank the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se) for excellent genotyping. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2011036. Recruitment for the WTCCC study was funded by the British Heart Foundation and genotyping by the Wellcome Trust. Themistocles L. Assimes was supported by an NIDDK career development award DK088942. Panos Deloukas's work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute for Health Research. Analysis was partly supported by BHF grant (to Panos Deloukas) RG/14/5/30893. Martin Farrall and Hugh Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z) and Martin Farrall, Hugh Watkins and Theodosios Kyriakou, the BHF Centre of Research Excellence. Anuj Goel, Hugh Watkins and Theodosios Kyriakou acknowledge European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. HEALTH-F2-2013-601456 (CVGenes@Target) & and Anuj Goel, the Wellcome Trust Institutional strategic support fund. The UK Twin study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). PoBI samples from the Wellcome Trust funded People of the British Isles project. Sekar Kathiresan is supported by the Donovan Family Foundation, Fondation Leducq, MGH Research Scholar Award, and R01 HL107816. Andrew P. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science, funded under grant WT098017. Christopher P. Nelson and Nilesh J. Samani are funded by the British Heart Foundation and Nilesh J. Samani is a UK NIUHR Senior Investigator. Christopher P. Nelson and Nilesh J. Samani are funded by the British Heart Foundation and Nilesh J. Samani is a UK NIUHR Senior Investigator. Samuli Ripatti was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No. 213506 and 129680), Academy of Finland (Grant No. 251217 and 285380), the Finnish foundation for Cardiovascular Research, the Sigrid Juselius Foundation and the European Community's Seventh Framework Programme (FP7/2007-2013) through the BioSHaRE-EU (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project, grant agreement 261433. Alexandre F. R. Stewart is supported by operating grants from the Canadian Institute of Health Research and Natural Sciences and Engineering Research Council of Canada. Hong-Hee Won is supported by a postdoctoral award from the American Heart Association (15POST23280019). ; Peer-reviewed ; Publisher Version
High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodifi ed by disease processes, mendelian random isation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal. Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol. Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10– ¹³) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with noncarriers. This diff erence in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10– ¹⁰). Interpretation Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction. Funding US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research. ; 115770
This is the final version. Available on open access from Nature Research via the DOI in this record. ; Data availability: GWAS summary statistics for FG/FI analyses presented in this manuscript are deposited on https://www.magicinvestigators.org/downloads/ and will be also be available through the NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/downloads/summary-statistics. Raw files for RNA-seq mRNA expression in islet donors have been deposited in NCBI GEO database with the accession code GSE50398. Summary-level GWAS results for genetic correlation analysis with glycemic traits were downloaded from the LDHub database (http://ldsc.broadinstitute.org/ldhub/). Islets from 89 cadaver donors were provided by the Nordic Islet Transplantation Programme (http://www.medscinet.com/nordicislets/). The dexseq_count python script for RNA sequencing analysis in human pancreatic islets was downloaded from http://www-huber.embl.de/pub/DEXSeq/analysis/scripts/. Raw files for RNA-seq mRNA expression in islet donors have been deposited in NCBI GEO database with the accession code GSE50398. ; Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes. ; Academy of Finland ; ADA ; Biotechnology and Biological Sciences Research Council (BBSRC) ; BHF ; Clinical Translational Science Institute ; Croatian Ministry of Science ; Directorate C - Public Health and Risk Assessment, Health & Consumer Protection ; Dutch Kidney Foundation ; Estonian Research Council ; European Research Council (ERC) ; European Regional Development Fund (ERDF) ; European Union Horizon 2020 ; Federal Ministry of Education and Research (BMBF), Germany ; Finnish Funding Agency for Technology and Innovation ; German Research Foundation ; Greek General Secretary of Research and Technology ; Icelandic National Bioethics Committee ; IFB Adiposity Diseases ; IngaBritt och Arne Lundberg's Research Foundation ; Italian Ministry of Health ; Knut & Alice Wallenberg foundation ; Kuopio University Hospital from Ministry of Health and Social Affairs ; Affymetrix, Inc ; Lundberg Foundation ; Medical Research Council (MRC) ; Mid-Atlantic Nutrition Obesity Research Center ; Ministry of Education and Culture of Finland ; MRC-GSK pilot programme ; NHLBI ; NIA ; NIH ; Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET ; Novo Nordisk Foundation ; NWO/ZonMW ; Spinozapremie ; Rutgers University Cell and DNA Repository ; Stockholm County Council ; Swedish Foundation for Strategic Research ; Swedish Heart-Lung Foundation ; Swedish Research Council ; Swiss National Science Foundation ; TEKES ; Torsten och Ragnar Söderbergs Stiftelser ; Wellcome Trust ; Yrjö Jahnsson Foundation ; Note that the full list of funders and grant numbers is available in the online article and in the PDF in this record
Funding for this study was provided by the Aase and Ejner Danielsens Foundation; Academy of Finland (41071, 77299, 102318, 110413, 117787, 121584, 123885, 124243, 124282, 126925, 129378, 134309, 286284); Accare Center for Child and Adolescent Psychiatry; Action on Hearing Loss (G51); Agence Nationale de la 359 Recherche; Agency for Health Care Policy Research (HS06516); ALF/LUA research grant in Gothenburg; ALFEDIAM; ALK-Abello´ A/S; Althingi; American Heart Association (13POST16500011); Amgen; Andrea and Charles Bronfman Philanthropies; Ardix Medical; Arthritis Research UK; Association Diabe`te Risque Vasculaire; Australian National Health and Medical Research Council (241944, 339462, 389875, 389891, 389892, 389927, 389938, 442915, 442981, 496739, 552485, 552498); Avera Institute; Bayer Diagnostics; Becton Dickinson; BHF (RG/14/5/30893); Boston Obesity Nutrition Research Center (DK46200), Bristol-Myers Squibb; British Heart Foundation (RG/10/12/ 28456, RG2008/08, RG2008/014, SP/04/002); Medical Research Council of Canada; Canadian Institutes for Health Research (FRCN-CCT-83028); Cancer Research UK; Cardionics; Cavadis B.V., Center for Medical Systems Biology; Center of Excellence in Genomics; CFI; CIHR; City of Kuopio; CNAMTS; Cohortes Sante´ TGIR; Contrat de Projets E´tat-Re´gion; Croatian Science Foundation (8875); Danish Agency for Science, Technology and Innovation; Danish Council for Independent Research (DFF-1333- 00124, DFF-1331-00730B); County Council of Dalarna; Dalarna University; Danish Council for Strategic Research; Danish Diabetes Academy; Danish Medical Research Council; Department of Health, UK; Development Fund from the University of Tartu (SP1GVARENG); Diabetes Hilfs- und Forschungsfonds Deutschland; Diabetes UK; Diabetes Research and Wellness Foundation Fellowship; Donald W. Reynolds Foundation; Dr Robert Pfleger-Stiftung; Dutch Brain Foundation; Dutch Diabetes Research Foundation; Dutch Inter University Cardiology Institute; Dutch Kidney Foundation (E033); Dutch Ministry of Justice; the DynaHEALTH action No. 633595, Economic Structure Enhancing Fund of the Dutch Government; Else Kro¨ner-Fresenius-Stiftung (2012_A147, P48/08//A11/08); Emil Aaltonen Foundation; Erasmus University Medical Center Rotterdam; Erasmus MC and Erasmus University Rotterdam; the Municipality of Rotterdam; Estonian Government (IUT20-60, IUT24-6); Estonian Research Roadmap through the Estonian Ministry of Education and Research (3.2.0304.11-0312); European Research Council (ERC Starting Grant and 323195:SZ-245 50371-GLUCOSEGENESFP7-IDEAS-ERC); European Regional Development Fund; European Science Foundation (EU/QLRT-2001-01254); European Commission (018947, 018996, 201668, 223004, 230374, 279143, 284167, 305739, BBMRI-LPC-313010, HEALTH-2011.2.4.2-2-EUMASCARA, HEALTH-2011-278913, HEALTH-2011-294713-EPLORE, HEALTH-F2- 2008-201865-GEFOS, HEALTH-F2-2013-601456, HEALTH-F4-2007-201413, HEALTH-F4-2007-201550-HYPERGENES, HEALTH-F7-305507 HOMAGE, IMI/ 115006, LSHG-CT-2006-018947, LSHG-CT-2006-01947, LSHM-CT-2004-005272, LSHM-CT-2006-037697, LSHM-CT-2007-037273, QLG1-CT-2002-00896, QLG2-CT2002-01254); Faculty of Biology and Medicine of Lausanne; Federal Ministry of Education and Research (01ZZ0103, 01ZZ0403, 01ZZ9603, 03IS2061A, 03ZIK012); Federal State of Mecklenburg-West Pomerania; Fe´de´ration Franc¸aise de Cardiologie; Finnish Cultural Foundation; Finnish Diabetes Association; Finnish Foundation of Cardiovascular Research; Finnish Heart Association; Fondation Leducq; Food Standards Agency; Foundation for Strategic Research; French Ministry of Research; FRSQ; Genetic Association Information Network (GAIN) of the Foundation for the NIH; German Federal Ministry of Education and Research (BMBF, 01ER1206, 01ER1507); GlaxoSmithKline; Greek General Secretary of Research and Technology; Go¨teborg Medical Society; Health and Safety Executive; Healthcare NHS Trust; Healthway; Western Australia; Heart Foundation of Northern Sweden; Helmholtz Zentrum Mu¨nchen—German Research Center for Environmental Health; Hjartavernd; Ingrid Thurings Foundation; INSERM; InterOmics (PB05 MIUR-CNR); INTERREG IV Oberrhein Program (A28); Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001); Italian Ministry of Health (ICS110.1/RF97.71); Italian Ministry of Economy and Finance (FaReBio di Qualita`); Marianne and Marcus Wallenberg Foundation; the Ministry of Health, Welfare and Sports, the Netherlands; J.D.E. and Catherine T, MacArthur Foundation Research Networks on Successful Midlife Development and Socioeconomic Status and Health; Juho Vainio Foundation; Juvenile Diabetes Research Foundation International; KfH Stiftung Pra¨ventivmedizin e.V.; King's College London; Knut and Alice Wallenberg Foundation; Kuopio University Hospital; Kuopio, Tampere and Turku University Hospital Medical Funds (X51001); La Fondation de France; Leenaards Foundation; Lilly; LMUinnovativ; Lundberg Foundation; Magnus Bergvall Foundation; MDEIE; Medical Research Council UK (G0000934, G0601966, G0700931, MC_U106179471, MC_UU_12019/1); MEKOS Laboratories; Merck Sante´; Ministry for Health, Welfare and Sports, The Netherlands; Ministry of Cultural Affairs of Mecklenburg-West Pomerania; Ministry of Economic Affairs, The Netherlands; Ministry of Education and Culture of Finland (627;2004-2011); Ministry of Education, Culture and Science, The Netherlands; Ministry of Science, Education and Sport in the Republic of Croatia (108-1080315-0302); MRC centre for Causal Analyses in Translational Epidemiology; MRC Human Genetics Unit; MRC-GlaxoSmithKline pilot programme (G0701863); MSD Stipend Diabetes; National Institute for Health Research; Netherlands Brain Foundation (F2013(1)-28); Netherlands CardioVascular Research Initiative (CVON2011-19); Netherlands Genomics Initiative (050-060-810); Netherlands Heart Foundation (2001 D 032, NHS2010B280); Netherlands Organization for Scientific Research (NWO) and Netherlands Organisation for Health Research and Development (ZonMW) (56-464- 14192, 60-60600-97-118, 100-001-004, 261-98-710, 400-05-717, 480-04-004, 480-05-003, 481-08-013, 904-61-090, 904-61-193, 911-11-025, 985-10-002, Addiction-31160008, BBMRI–NL 184.021.007, GB-MaGW 452-04-314, GB-MaGW 452-06-004, GB-MaGW 480-01-006, GB-MaGW 480-07-001, GB-MW 940-38-011, Middelgroot-911-09-032, NBIC/BioAssist/RK 2008.024, Spinozapremie 175.010.2003.005, 175.010.2007.006); NATURE COMMUNICATIONS | DOI:10.1038/ncomms14977 ARTICLE NATURE COMMUNICATIONS | 8:14977 | DOI:10.1038/ncomms14977 | www.nature.com/naturecommunications 13 Neuroscience Campus Amsterdam; NHS Foundation Trust; National Institutes of Health (1RC2MH089951, 1Z01HG000024, 24152, 263MD9164, 263MD821336, 2R01LM010098, 32100-2, 32122, 32108, 5K99HL130580-02, AA07535, AA10248, AA11998, AA13320, AA13321, AA13326, AA14041, AA17688, AG13196, CA047988, DA12854, DK56350, DK063491, DK078150, DK091718, DK100383, DK078616, ES10126, HG004790, HHSN268200625226C, HHSN268200800007C, HHSN268201200036C, HHSN268201500001I, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C, HL043851, HL45670, HL080467, HL085144, HL087660, HL054457, HL119443, HL118305, HL071981, HL034594, HL126024, HL130114, KL2TR001109, MH66206, MH081802, N01AG12100, N01HC55015, N01HC55016, N01C55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC95159, N01HC95160, N01HC95161, N01HC95162, N01HC95163, N01HC95164, N01HC95165, N01HC95166, N01HC95167, N01HC95168, N01HC95169, N01HG65403, N01WH22110, N02HL6-4278, N01-HC-25195, P01CA33619, R01HD057194, R01HD057194, R01AG023629, R01CA63, R01D004215701A, R01DK075787, R01DK062370, R01DK072193, R01DK075787, R01DK089256, R01HL53353, R01HL59367, R01HL086694, R01HL087641, R01HL087652, R01HL103612, R01HL105756, R01HL117078, R01HL120393, R03 AG046389, R37CA54281, RC2AG036495, RC4AG039029, RPPG040710371, RR20649, TW008288, TW05596, U01AG009740, U01CA98758, U01CA136792, U01DK062418, U01HG004402, U01HG004802, U01HG007376, U01HL080295, UL1RR025005, UL1TR000040, UL1TR000124, UL1TR001079, 2T32HL007055-36, T32GM074905, HG002651, HL084729, N01-HC25195, UM1CA182913); NIH, National Institute on Aging (Intramural funding, NO1-AG-1-2109); Northern Netherlands Collaboration of Provinces; Novartis Pharma; Novo Nordisk; Novo Nordisk Foundation; Nutricia Research Foundation (2016-T1); ONIVINS; Parnassia Bavo group; Pierre Fabre; Province of Groningen; Pa¨ivikki and Sakari Sohlberg Foundation; Påhlssons Foundation; Paavo Nurmi Foundation; Radboud Medical Center Nijmegen; Research Centre for Prevention and Health, the Capital Region of Denmark; the Research Institute for Diseases in the Elderly; Research into Ageing; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; Roche; Royal Society; Russian Foundation for Basic Research (NWO-RFBR 047.017.043); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06); Sanofi-Aventis; Scottish Government Health Directorates, Chief Scientist Office (CZD/16/6); Siemens Healthcare; Social Insurance Institution of Finland (4/26/2010); Social Ministry of the Federal State of Mecklenburg-West Pomerania; Socie´te´ Francophone du 358 Diabe`te; State of Bavaria; Stiftelsen fo¨r Gamla Tja¨narinnor; Stockholm County Council (560183, 592229); Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and Stockholm County Council; Stroke Association; Swedish Diabetes Association; Swedish Diabetes Foundation (2013-024); Swedish Foundation for Strategic Research; Swedish Heart-Lung Foundation (20120197, 20150711); Swedish Research Council (0593, 8691, 2012-1397, 2012-1727, and 2012-2215); Swedish Society for Medical Research; Swiss Institute of Bioinformatics; Swiss National Science Foundation (3100AO-116323/1, 31003A-143914, 33CSCO-122661, 33CS30-139468, 33CS30-148401, 51RTP0_151019); Tampere Tuberculosis Foundation; Technology Foundation STW (11679); The Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Ministry of the Flemish Community (G.0880.13, G.0881.13); The Great Wine Estates of the Margaret River Region of Western Australia; Timber Merchant Vilhelm Bangs Foundation; Topcon; Tore Nilsson Foundation; Torsten and Ragnar So¨derberg's Foundation; United States – Israel Binational Science Foundation (Grant 2011036), Umeå University; University Hospital of Regensburg; University of Groningen; University Medical Center Groningen; University of Michigan; University of Utrecht; Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) (b2011036); Velux Foundation; VU University's Institute for Health and Care Research; Va¨stra Go¨taland Foundation; Wellcome Trust (068545, 076113, 079895, 084723, 088869, WT064890, WT086596, WT098017, WT090532, WT098051, 098381); Wissenschaftsoffensive TMO; Yrjo¨ Jahnsson Foundation; and Åke Wiberg Foundation