The CDF-S Viewed with SIMBA
In: Multiwavelength Mapping of Galaxy Formation and Evolution; ESO Astrophysics Symposia, S. 106-111
11 Ergebnisse
Sortierung:
In: Multiwavelength Mapping of Galaxy Formation and Evolution; ESO Astrophysics Symposia, S. 106-111
Extragalactic astronomy.-- et al. ; [Context]: Samples of star-forming galaxies at different redshifts have been traditionally selected via color techniques. The ALHAMBRA survey was designed to perform a uniform cosmic tomography of the Universe, and we here exploit it to trace the evolution of these galaxies. [Aims]: Our objective is to use the homogeneous optical coverage of the ALHAMBRA filter system to select samples of star-forming galaxies at different epochs of the Universe and study their properties. [Methods]: We present a new color-selection technique, based on the models of spectral evolution convolved with the ALHAMBRA bands and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5
BASE
arXiv:1601.03668v1 ; We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35
BASE
Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).-- et al. ; [Context]: Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. [Aims]: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. [Methods]: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. [Results]: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. [Conclusions]: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a natural way. ; K. Viironen acknowledges the Juan de la Cierva fellowship of the Spanish government. We acknowledge funding from the FITE (Fondos de Inversiones de Teruel) and support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2012-30789, AYA2006-14056, AYA 2003-00128, AYA 2006-01325, AYA 2007-62190, AYA2010-15169, AYA2010-22111-C03-02 and AYA2013-48623-C2-2. We also acknowledge Junta de Andalucía through the grant TIC 114 and Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, and the financial support from the Aragón Government through the Research Group E103. I. Oteo acknowledges support from the European Research Council (ERC) in the form of Advanced Grant, cosmicism. A. J. Cenarro acknowledges the Ramón y Cajal fellowship of the Spanish government. M. Povic acknowledges financial support from JAE-Doc program of the Spanish National Research Council (CSIC), cofunded by the European Social Fund. ; Peer Reviewed
BASE
We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M > 10M) early-type galaxies at z < 0.3 from the ALHAMBRA survey. We produced detailed 2D maps of stellar population properties (age, metallicity, and extinction), which allow us to identify galactic features. Radial structures were studied, and luminosity-weighted and mass-weighted gradients were derived out to 2-3.5 R. We find that the spatially resolved stellar population mass, age, and metallicity are well represented by their integrated values. We find the gradients of early-type galaxies to be on average flat in age (⇠log Age = 0.02 ± 0.06 dex/R) and negative in metallicity (⇠[Fe/H] = -0.09 ± 0.06 dex/R). Overall,the extinction gradients are flat (⇠A = -0.03 ± 0.09 mag/R) with a wide spread. These results are in agreement with previous studies that used standard long-slit spectroscopy, and with the most recent IFU studies. According to recent simulations, these results are consistent with a scenario where early-type galaxies were formed through major mergers and where their final gradients are driven by the older ages and higher metallicity of the accreted systems. We demonstrate the scientific potential of multi-filter photometry to explore the spatially resolved stellar populations of local galaxies and confirm previous spectroscopic trends from a complementary technique. ; This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2012-30789 and AYA2015-66211-C2-1-P. We also acknowledge financial support from the projects AYA2014-57490-P and AYA2016-77846-P, and from the Aragón Government through the Research Group E103. B.A. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 656354. M.P. acknowledges financial supports from the Ethiopian Space Science and Technology Institute (ESSTI) under the Ethiopian Ministry of Science and Technology (MoST), and from the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects AYA2013-42227-P and AYA2016-76682-C3-1-P (AEI/FEDER, UE). ; Peer Reviewed
BASE
Numerical methods and codes.-- et al. ; [Aims]: We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. [Methods]: Making use of an error-weighted X2-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. The final parameters and their uncertainties are derived by a Monte Carlo method, using the individual photometric uncertainties in each band. Finally, we discuss the accuracies, degeneracies, and reliability of MUFFIT using both simulated and real galaxies from ALHAMBRA, comparing with results from the literature. [Results]: MUFFIT is a precise and reliable code to derive stellar population parameters of galaxies in ALHAMBRA. Using the results from photometric-redshift codes as input, MUFFIT improves the photometric-redshift accuracy by ∼10-20%. MUFFIT also detects nebular emissions in galaxies, providing physical information about their strengths. The stellar masses derived from MUFFIT show excellent agreement with the COSMOS and SDSS values. In addition, the retrieved age-metallicity locus for a sample of z ≤ 0.22 early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters, hence reinforcing the strengths of multi-filter galaxy data and optimized analysis techniques, like MUFFIT, to conduct reliable stellar population studies. ; L.A.D.G. acknowledges support from the "Caja Rural de Teruel" for developing this research. A.J.C. is a Ramon y Cajal Fellow of the Spanish Ministry of Science and Innovation. This work has been supported by the "Programa Nacional de Astronomia y Astrofisica" of the Spanish Ministry of Economy and Competitiveness (MINECO) under grant AYA2012-30789, as well as by FEDER funds and the Government of Aragon, through the Research Group E103. L.A.D.G. also thanks the Mullard Space Science Laboratory (MSSL) and Royal Astronomical Society (RAS) for offering the opportunity to support and develop part of this research in collaboration with I.F. MINECO grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013-48623-C2-2, and AYA2014-58861-C3-1 are also acknowledged, together with Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, and Junta de Andalucia grants TIC114, JA2828, and P10-FQM-6444. MP acknowledges financial support from the JAE-Doc programme of the Spanish National Research Council (CSIC), co-funded by the European Social Fund. ; Peer Reviewed
BASE
[Aims]: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. [Methods]: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections.We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. [Results]: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20 - 1:1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2:7 0:5) than for red galaxies (n = 1:3 0:4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nm red = 0:57 0:05 for red galaxies and Nm blue = 0:26 0:02 for blue galaxies. [Conclusions]: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. ; This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge financial support from the Spanish Government grants AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, and AYA2013-48623-C2-2, from the Aragón Government through the Research Group E103, from the Junta de Andalucía through TIC-114 and the Excellence Project P08-TIC-03531, and from the Generalitat Valenciana through the projects Prometeo/2009/064 and PrometeoII/2014/060. A.J.C. is Ramón y Cajal fellow of the Spanish government. M.P. acknowledges the financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund. ; Peer Reviewed
BASE
[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory, σv,dm. This provides an estimation of the galaxy bias b. [Results]: The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several B-band luminosity selections. We find that b increases with the B-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel = 1.4 ± 0.2. [Conclusions]: Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias b from a method independent of correlation functions. ; This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2012-39620, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013-48623-C2-2, ESP2013-48274, AYA2014-58861-C3-1, Aragon Government Research Group E103, Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, Junta de Andalucia grants TIC114, JA2828, P10-FQM-6444, and Generalitat de Catalunya project SGR-1398. A.J.C. and C.H.-M. are Ramon y Cajal fellows of the Spanish government. A. M. acknowledges the financial support of the Brazilian funding agency FAPESP (Post-doc fellowship - process number 2014/11806-9). M.P. acknowledges financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund. ; Peer Reviewed
BASE
[Aims]: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. [Methods]: We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). [Results]: The cosmic variance σv of the merger fraction depends mainly on (i) the number density of the populations under study for both the principal (n1) and the companion (n2) galaxy in the close pair and (ii) the probed cosmic volume Vc. We do not find a significant dependence on either the search radius used to define close companions, the redshift, or the physical selection (luminosity or stellar mass) of the samples. Conclusions. We have estimated the cosmic variance that affects the measurement of the merger fraction by close pairs from observations. We provide a parametrisation of the cosmic variance with n1, n2, and Vc, σv α n-0.54 1 V-0.48 c (n2/n1)-0.37. Thanks to this prescription, future merger fraction studies based on close pairs could properly account for the cosmic variance on their results. © ESO 2014. ; This work has mainly been funding by the FITE (Fondo de Inversiones de Teruel) and the projects AYA2006-14056 and CSD2007-00060. We also acknowledge the financial support from the Spanish grants AYA2010-15169, AYA2010-22111-C03-01 and AYA2010-22111-C03-02, from the Junta de Andalucia through TIC-114 and the Excellence Project P08-TIC-03531, and from the Generalitat Valenciana through the project Prometeo/2009/064. A.J.C. (RyC-2011-08529) and C.H. (RyC-2011-08262) are Ramón y Cajal fellows of the Spanish government. ; Peer Reviewed
BASE
[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. [Results]: We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2 ≤ z < 1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of M ∝ Q is Q = -1.03±0.08 and Q = -0.80±0.08, and of logφ ∝ P is P = -0.01±0.03 and P = -0.41 ± 0.05. The measured faint-end slopes are α = -1.29 ± 0.02 and α = -0.53 ± 0.04. We find a significant population of faint quiescent galaxies with M ≳ -18, modelled by a second Schechter function with slope β = -1.31 ± 0.11. [Conclusions]: We present a robust methodology to compute LFs using multi-filter photometric data. The application to ALHAMBRA shows a factor 2.55 ± 0.14 decrease in the luminosity density j of star-forming galaxies, and a factor 1.25 ± 0.16 increase in the j of quiescent ones since z = 1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to j increases from 3% at z = 1 to 6% at z = 0. The developed methodology will be applied to future multi-filter surveys such as J-PAS. ; This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2015-66211-C2-1, AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2012-39620, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013- 48623-C2-2, ESP2013-48274, AYA2014-58861-C3-1, Aragón Government Research Group E103, Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, Junta de Andalucía grants TIC114, JA2828, P10-FQM-6444, and Generalitat de Catalunya project SGR-1398. E.T. acknowledges the support by the ETAg grants IUT26-2, IUT40-2, and by the European Regional Development Fund (TK133). A.M. acknowledges the financial support of the Brazilian funding agency FAPESP (Post-doc fellowship – process number 2014/11806-9). B.A. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 656354. ; Peer Reviewed
BASE
We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg(2) of the 2013-2016 survey, which covers >15000 deg(2) at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a "CMB-only" spectrum that extends to l = 4000. At large angular scales, foreground emission at 150 GHz is similar to 1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for Lambda CDM for the ACT data alone with a prior on the optical depth of tau = 0.065 +/- 0.015. Lambda CDM is a good fit. The best-fit model has a reduced chi(2) of 1.07 (PTE = 0.07) with H-0 = 67.9 +/- 1.5 km/s/Mpc. We show that the lensing BB signal is consistent with Lambda CDM and limit the celestial EB polarization angle to psi(P) = 0.07 degrees +/- 0.09 degrees. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released. ; National Science Foundation (NSF) AST0408698 AST-0965625 AST-1440226 PHY0355328 PHY-0855887 PHY-1214379 Princeton University University of Pennsylvania Canada Foundation for Innovation CFI under the Compute Canada Government of Ontario Ontario Research Fund \ Research Excellence University of Toronto Simons Foundation National Aeronautics & Space Administration (NASA) NNX13AE56G NNX14AB58G National Institute of Standards & Technology (NIST) - USA Cornell Presidential Postdoctoral Fellowship Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) BASAL CATA AFB-170002 National Science Foundation (NSF) AST-1814971 AST1454881 AST-1513618 AST-1907657 AST-1910021 National Research Foundation - South Africa STFC Ernest Rutherford Fellowship ST/M004856/2 STFC Consolidated Grant ST/S00033X/1 Horizon 2020 ERC Starting Grant 849169 Dicke Fellowship Mishrahi and Wilkinson funds CIfAR's Gravity & the Extreme Universe Program CGIAR Dunlap Institute
BASE