Temperature effects on carbon storage are controlled by soil stabilisation capacities
This is the final version. Available on open access from Nature Research via the DOI in this record ; Data availability: All data used in this manuscript are fully open access and available. The soil data were obtained from a published snapshot derived from the World Soil Information database (https://doi.org/10.17027/isric-wdcsoils.20160003), the long-term climate data are available in the WorldClim version 2.0 database (http://worldclim.org), while the MODIS primary productivity, evapotranspiration, and landcover data are available in the MOD17A3 (https://doi.org/10.5067/MODIS/MOD17A3.006), MOD16A2 (https://doi.org/10.5067/MODIS/MOD16A2.006) and MCD12Q1 (https://doi.org/10.5067/MODIS/MCD12Q1.006) databases respectively. The UKESM data from the sixth coupled model intercomparison project (CMIP6) is available in the public data archive (https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL). ; Physical and chemical stabilisation mechanisms are now known to play a critical role in controlling carbon (C) storage in mineral soils, leading to suggestions that climate warming-induced C losses may be lower than previously predicted. By analysing > 9,000 soil profiles, here we show that, overall, C storage declines strongly with mean annual temperature. However, the reduction in C storage with temperature was more than three times greater in coarse-textured soils, with limited capacities for stabilising organic matter, than in fine-textured soils with greater stabilisation capacities. This pattern was observed independently in cool and warm regions, and after accounting for potentially confounding factors (plant productivity, precipitation, aridity, cation exchange capacity, and pH). The results could not, however, be represented by an established Earth system model (ESM). We conclude that warming will promote substantial soil C losses, but ESMs may not be predicting these losses accurately or which stocks are most vulnerable. ; Natural Environment Research Council (NERC) ; Swedish Research Council ; European Union Horizon 2020