THz spectroscopy and first ISM detection of excited torsional states of 13C-methyl formate
Context. An astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules to be able to identify them. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict the transitions frequencies very precisely that were not measured in the laboratory. Aims. We present the experimental study and its theoretical analysis for two 13C-methyl formate isotopologues to detect these two isotopologues for the first time in their excited torsional states, which lie at 130 cm-1 (200 K) in Orion-KL. Methods. New spectra of HCOO13CH3 (13C2) methyl formate were recorded with the mm- and submm-wave spectrometer in Lille from 50 to 940 GHz. A global fit for vt = 0 and 1 was accomplished with the BELGI program to reproduce the experimental spectra with greater accuracy. Results. We analysed 5728 and 2881 new lines for vt = 0 and 1 for HCOO13CH3. These new lines were globally fitted with 846 previously published lines for vt = 0. In consequence, 52 parameters of the RAM Hamiltonian were accurately determined and the value of the barrier height (V3 = 369.93168(395) cm-1) was improved. We report the detection of the first excited torsional states (vt = 1) in Orion-KL for the 13C2 and 13C1 methyl formate based on the present analysis and previously published data. We provide column densities, isotopic abundances, and vibrational temperatures for these species. Conclusions. Following this work, accurate prediction can be provided. This permits detecting 135 features of the first excited torsional states of 13C-methyl formate isotopologues in Orion-KL in the 80−280 GHz frequency range, without missing lines. ; M.C. acknowledges the financial support the Spanish Government through grant FIS2011-28738-C02-02, and by a joint project within the framework of a CNRS (France) and CSIC (Spain) agreement (Code No.: 2011 FR0018). J.C., A.L. and B.T. thank the Spanish MINECO for funding support from grants CSD2009-00038, AYA2009-07304, and AYA2012-32032. This work was supported by the Centre National d'Etudes Spatiales (CNES) and the Action sur Projets de l'INSU, "Physique et Chimie du Milieu Interstellaire". This work was also performed under the ANR-08-BLAN-0054.