To assess the effectiveness of climate change communications, it is important to examine their long-term impacts on individuals' attitudes and behavior. This article offers an example study and a discussion of the challenges of conducting long-term investigations of behavioral change related to climate change communications (a vital and underresearched area). The research reported is a longitudinal panel study of the impacts on UK viewers of the climate change movie The Age of Stupid. The heightened levels of concern, motivation to act, and sense of agency about action that were initially generated by the movie did not measurably persist over the long term. The results also show that behavioral intentions do not necessarily translate into action. Data analysis raised issues concerning the reliability of participants' causal attributions of their behavior. This and other methodological challenges are discussed, and some ways of avoiding or lessening problems are suggested.
Neuroliberalism -- An historical geography of neuroliberalism I -- An historical geography of neuroliberalism II -- The neuroliberal subject: rethinking human nature and reinventing the self -- Redefining freedom: neuroliberal autonomy and citizenship -- The neuroliberal state -- The neuroliberal corporation -- Neuroliberal environments: design, contexts and materiality -- Practical interventions in neuroliberalism: mindfulness and behaviour change
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent. ; publishedVersion
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innova-tions, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent. ; Publisher PDF ; Peer reviewed
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent. ; Peer reviewed
In: Fazey , I , Schäpke , N , Caniglia , G , Hodgson , A , Kendrick , I , Lyon , C , Page , G , Patterson , J , Riedy , C , Strasser , T , Verveen , S , Adams , D , Goldstein , B , Klaes , M , Leicester , G , Linyard , A , McCurdy , A , Ryan , P , Sharpe , B , Silvestri , G , Abdurrahim , A Y , Abson , D , Adetunji , O S , Aldunce , P , Alvarez-Pereira , C , Amparo , J M , Amundsen , H , Anderson , L , Andersson , L , Asquith , M , Augenstein , K , Barrie , J , Bent , D , Bentz , J , Bergsten , A , Berzonsky , C , Bina , O , Blackstock , K , Boehnert , J , Bradbury , H , Brand , C , Böhme (born Sangmeister) , J , Bøjer , M M , Carmen , E , Charli-Joseph , L , Choudhury , S , Chunhachoti-ananta , S , Cockburn , J , Colvin , J , Connon , I L C , Cornforth , R , Cox , R S , Cradock-Henry , N , Cramer , L , Cremaschi , A , Dannevig , H , Day , C T , de Lima Hutchison , C , de Vrieze , A , Desai , V , Dolley , J , Duckett , D , Durrant , R A , Egermann , M , Elsner (Adams) , E , Fremantle , C , Fullwood-Thomas , J , Galafassi , D , Gobby , J , Golland , A , González-Padrón , S K , Gram-Hanssen , I , Grandin , J , Grenni , S , Lauren Gunnell , J , Gusmao , F , Hamann , M , Harding , B , Harper , G , Hesselgren , M , Hestad , D , Heykoop , C A , Holmén , J , Holstead , K , Hoolohan , C , Horcea-Milcu , A I , Horlings , L G , Howden , S M , Howell , R A , Huque , S I , Inturias Canedo , M L , Iro , C Y , Ives , C D , John , B , Joshi , R , Juarez-Bourke , S , Juma , D W , Karlsen , B C , Kliem , L , Kläy , A , Kuenkel , P , Kunze , I , Lam , D P M , Lang , D J , Larkin , A , Light , A , Luederitz , C , Luthe , T , Maguire , C , Mahecha-Groot , A M , Malcolm , J , Marshall , F , Maru , Y , McLachlan , C , Mmbando , P , Mohapatra , S , Moore , M L , Moriggi , A , Morley-Fletcher , M , Moser , S , Mueller , K M , Mukute , M , Mühlemeier , S , Naess , L O , Nieto-Romero , M , Novo , P , ÓBrien , K , O'Connell , D A , O'Donnell , K , Olsson , P , Pearson , K R , Pereira , L , Petridis , P , Peukert , D , Phear , N , Pisters , S R , Polsky , M , Pound , D , Preiser , R , Rahman , M S , Reed , M S , Revell , P , Rodriguez , I , Rogers , B C , Rohr , J , Nordbø Rosenberg , M , Ross , H , Russell , S , Ryan , M , Saha , P , Schleicher , K , Schneider , F , Scoville-Simonds , M , Searle , B , Sebhatu , S P , Sesana , E , Silverman , H , Singh , C , Sterling , E , Stewart , S J , Tàbara , J D , Taylor , D , Thornton , P , Tribaldos , T M , Tschakert , P , Uribe-Calvo , N , Waddell , S , Waddock , S , van der Merwe , L , van Mierlo , B , van Zwanenberg , P , Velarde , S J , Washbourne , C L , Waylen , K , Weiser , A , Wight , I , Williams , S , Woods , M , Wolstenholme , R , Wright , N , Wunder , S , Wyllie , A & Young , H R 2020 , ' Transforming knowledge systems for life on Earth : Visions of future systems and how to get there ' , Energy Research and Social Science , vol. 70 , 101724 . https://doi.org/10.1016/j.erss.2020.101724
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.