This work was funded by The Scottish Government Rural and Environment Science and Analytical Services Division (RESAS), Scotland, United Kingdom and the Biotechnology and Biological Sciences Research Council (BBSRC; East-Bio Doctoral Training Partnership), United Kingdom. The funders had no role in the design of the study, the analysis and interpretation of the data, or the publication process. The authors wish to thank Prof. John Hayes, University of Dundee, for the NQO1-luciferase construct and Prof. Gary Felsenfeld, NIH, Bethesda for the plasmid pJC13-1. ; Peer reviewed ; Postprint
cknowledgements The research leading to these results has received funding from the following FEDER cofounded-grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01, AGL2014-58210-R, and Consellería de Cultura, Educación e OrdenaciónUniversitaria, GRC2013-016, and through AxenciaGalega de Innovación, Spain, ITC-20133020 SINTOX. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union's Seventh Framework Programme managed by REA - Research Executive Agency (FP7/2007-2013) under grant agreement 312184 PHARMASEA. Jon Andoni Sánchez is supported by a fellowship from Plan Galego de Investigación e Crecemento, Xunta de Galicia, Spain. ; Peer reviewed ; Publisher PDF
Acknowledgements The research leading to these results has received funding from the following FEDER cofounded-grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01, AGL2014-58210-R, and Consellería de Cultura, Educación e Ordenación Universitaria, GRC2013-016, and through Axencia Galega de Innovación, Spain, ITC-20133020 SINTOX. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union's Seventh Framework Programme managed by REA—Research Executive Agency (FP7/2007-2013) under grant agreement 312184 PHARMASEA. We wish to thank the Clínica Losada Arránz, especially Ms. Paula López Arránz for providing the human blood samples for T cells purification. Jon Andoni Sánchez is supported by a fellowship from Plan Galego de Investigación e Crecemento, Xunta de Galicia, Spain. ; Peer reviewed ; Postprint
Accepted: 8 January 2014 This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acknowledgments The research leading to these results has received funding from the following FEDER cofunded-grants: From Ministerio de Ciencia y Tecnología, Spain: AGL2009-13581-CO2-01, AGL2012-40485-CO2-01. From Xunta de Galicia, Spain: 10PXIB261254 PR. From the European Union's Seventh Framework Programme managed by REA—Research Executive Agency (FP7/2007–2013) under grant agreement Nos. 265896 BAMMBO, 265409 µAQUA, and 262649 BEADS, 315285 CIGUATOOLS and 312184 PHARMASEA. From the Atlantic Area Programme (Interreg IVB Trans-national): 2009-1/117 Pharmatlantic. MER thanks the Government of the Arab Republic of Egypt for a PhD Scholarship. MJ thanks the Scottish University Life Science Alliance which provided funding to set up the compound library. ; Peer reviewed ; Publisher PDF
Acknowledgments The research leading to these results has received funding from the following FEDER cofounded-grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01, AGL2014-58210-R, and Consellería de Cultura, Educación e Ordenación Universitaria, GRC2013-016, and through Axencia Galega de Innovación, Spain, ITC-20133020 SINTOX. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union's Seventh Framework Programme managed by REA – Research Executive Agency (FP7/2007-2013) under grant agreement 312184 PHARMASEA. We wish to thank the Clínica Losada Arránz, especially Ms. Paula López Arránz for providing the human blood samples for T cells purification. JS is supported by a fellowship from Plan Galego de Investigación e Crecemento, Xunta de Galicia, Spain. ; Peer reviewed ; Publisher PDF
The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases ; The research leading to these results has received funding from the following FEDER cofunded-grants: From Ministerio de Ciencia y Tecnología, Spain: AGL2009-13581-CO2-01, AGL2012-40485-CO2-01. From Xunta de Galicia, Spain: 10PXIB261254 PR. From the European Union's Seventh Framework Programme managed by REA—Research Executive Agency (FP7/2007–2013) under grant agreement Nos. 265896 BAMMBO, 265409 µAQUA, and 262649 BEADS, 315285 CIGUATOOLS and 312184 PHARMASEA. From the Atlantic Area Programme (Interreg IVB Trans-national): 2009-1/117 Pharmatlantic. MER thanks the Government of the Arab Republic of Egypt for a PhD Scholarship ; SI