In: Bulletin of the World Health Organization: the international journal of public health = Bulletin de l'Organisation Mondiale de la Santé, Band 92, Heft 2, S. 126-138
BACKGROUND: In India, the prevalence of overweight and obesity has increased rapidly in recent decades. Given the association between overweight and obesity with many non-communicable diseases, forecasts of the future prevalence of overweight and obesity can help inform policy in a country where around one sixth of the world's population resides. METHODS: We used a system of multi-state life tables to forecast overweight and obesity prevalence among Indians aged 20-69 years by age, sex and urban/rural residence to 2040. We estimated the incidence and initial prevalence of overweight using nationally representative data from the National Family Health Surveys 3 and 4, and the Study on global AGEing and adult health, waves 0 and 1. We forecasted future mortality, using the Lee-Carter model fitted life tables reported by the Sample Registration System, and adjusted the mortality rates for Body Mass Index using relative risks from the literature. RESULTS: The prevalence of overweight will more than double among Indian adults aged 20-69 years between 2010 and 2040, while the prevalence of obesity will triple. Specifically, the prevalence of overweight and obesity will reach 30.5% (27.4%-34.4%) and 9.5% (5.4%-13.3%) among men, and 27.4% (24.5%-30.6%) and 13.9% (10.1%-16.9%) among women, respectively, by 2040. The largest increases in the prevalence of overweight and obesity between 2010 and 2040 is expected to be in older ages, and we found a larger relative increase in overweight and obesity in rural areas compared to urban areas. The largest relative increase in overweight and obesity prevalence was forecast to occur at older age groups. CONCLUSION: The overall prevalence of overweight and obesity is expected to increase considerably in India by 2040, with substantial increases particularly among rural residents and older Indians. Detailed predictions of excess weight are crucial in estimating future non-communicable disease burdens and their economic impact. ; This study was supported in part by the Victorian Government's OIS Program, the Australian National Health and Medical Research Council (NHMRC Project no. 1122744), the Murdoch Children's Research Institute, and the Royal Children's Hospital Foundation (grant no. 2017-896). GA was supported by an NHMRC Early Career Fellowship (no. 1090462). MI was supported by the Munz Chair of Cardiovascular Prediction and Prevention. This study acknowledges the use of the following UK JIA cohort collections: The Biologics for Children with Rheumatic Diseases (BCRD) study (funded by Arthritis Research UK Grant 20747). The British Society for Paediatric and Adolescent Rheumatology Etanercept Cohort Study (BSPAR-ETN) (funded by a research grant from the British Society for Rheumatology (BSR). BSR has previously also received restricted income from Pfizer to fund this project). Childhood Arthritis Prospective Study (CAPS) (funded by Versus Arthritis, grant reference number 20542), Childhood Arthritis Response to Medication Study (CHARMS) (funded by Sparks UK, reference 08ICH09, and the Medical Research Council, reference MR/M004600/1), United Kingdom Juvenile Idiopathic Arthritis Genetics Consortium (UKJIAGC). Genotyping of the UK JIA case samples were supported by the Versus Arthritis grants reference numbers 20385 and 21754. This research was funded by the NIHR Manchester Biomedical Research Centre and supported by the Manchester Academic Health Sciences Centre (MAHSC). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We would like to acknowledge the assistance given by IT Services and the use of the Computational Shared Facility at The University of Manchester. Finally, the CHOP data used were funded by an Institute Development Fund to the CAG center from The Children's Hospital of Philadelphia and by NIH grant, U01-HG006830, from the NHGRI-sponsored eMERGE Network.
The use of mathematical modelling to inform and support tuberculosis (TB) policy-making has been encouraged by major funders and adopted by several high-burden countries. These quantitative planning exercises are undertaken to provide evidence for proposed interventions, improve the impact of TB funding and support funding applications. In recent years, a number of technical assistance providers have developed mathematical models and technical assistance capacity to support in-country TB policy decisions, and it is expected that the demand for technical assistance to support TB modelling will increase. The WHO Global Task Force on TB Impact Measurement provides global oversight to ensure that assessments of progress towards ending TB at global, regional and country levels are as rigorous, robust and consensus based as possible. The Task Force supports countries to improve the analysis and use of TB data for policy, planning and programmatic action, and is committed to the ongoing improvement of model-based policy analysis as a tool for strategic planning and budgeting. This document aims to provide concrete, pragmatic guidance for how TB modelling and related technical assistance is undertaken to support country decision-making. The target audience for this document are the participants and stakeholders in country-level TB modelling efforts, including the individuals who build and apply models; policy-makers, technical experts and other members of the TB community; international funding and technical partners; and individuals and organizations engaged in supporting TB policy-making.
South Africa has the highest tuberculosis (TB) disease incidence rate in the world, and TB is the leading infectious cause of death. Decisions on, and funding for, TB prevention and care policies are decentralised to the provincial governments and therefore, tools to inform policy need to operate at this level. We describe the use of a mathematical model planning tool at provincial level in a high HIV and TB burden country, to estimate the impact on TB burden of achieving the 90-(90)-90 targets of the Stop TB Partnership Global Plan to End TB. "TIME Impact" is a freely available, user-friendly TB modelling tool. In collaboration with provincial TB programme staff, and the South African National TB Programme, models for three (of nine) provinces were calibrated to TB notifications, incidence, and screening data. Reported levels of TB programme activities were used as baseline inputs into the models, which were used to estimate the impact of scale-up of interventions focusing on screening, linkage to care and treatment success. All baseline models predicted a trend of decreasing TB incidence and mortality, consistent with recent data from South Africa. The projected impacts of the interventions differed by province and were greatly influenced by assumed current coverage levels. The absence of provincial TB burden estimates and uncertainty in current activity coverage levels were key data gaps. A user-friendly modelling tool allows TB burden and intervention impact projection at the sub-national level. Key sub-national data gaps should be addressed to improve the quality of sub-national model predictions.
Decentralised health services form a key part of chronic care strategies in resource-limited settings by reducing the distance between patient and clinic and thereby the time and costs involved in travelling. However, few tools exist to evaluate the impact of decentralisation on patient travel time or what proportion of patients attend their nearest clinic. Here we develop methods to monitor changes in travel time, using data from the antiretroviral therapy (ART) roll-out in a rural district in North Malawi. ; Journal Article ; SCOPUS: ar.j ; info:eu-repo/semantics/published
Background: We aimed to estimate the disease burden of Tuberculosis (TB) and return on investment of TB care in selected high-burden countries of the Western Pacific Region (WPR) until 2030. Methods: We projected the TB epidemic in Viet Nam and Lao People's Democratic Republic (PDR) 2020–2030 using a mathematical model under various scenarios: counterfactual (no TB care); baseline (TB care continues at current levels); and 12 different diagnosis and treatment interventions. We retrieved previous modeling results for China and the Philippines. We pooled the new and existing information on incidence and deaths in the four countries, covering >80% of the TB burden in WPR. We estimated the return on investment of TB care and interventions in Viet Nam and Lao PDR using a Solow model. Findings: In the baseline scenario, TB incidence in the four countries decreased from 97•0/100,000/year (2019) to 90•1/100,000/year (2030), and TB deaths from 83,300/year (2019) to 71,100/year (2030). Active case finding (ACF) strategies (screening people not seeking care for respiratory symptoms) were the most effective single interventions. Return on investment (2020–2030) for TB care in Viet Nam and Lao PDR ranged US$4-US$49/dollar spent; additional interventions brought up to US$2•7/dollar spent. Interpretation: In the modeled countries, TB incidence will only modestly decrease without additional interventions. Interventions that include ACF can reduce TB burden but achieving the End TB incidence and mortality targets will be difficult without new transformational tools (e.g. vaccine, new diagnostic tools, shorter treatment). However, TB care, even at its current level, can bring a multiple-fold return on investment. Funding: World Health Organization Western Pacific Regional Office; Swiss National Science Foundation Grant 163878.
BACKGROUND: We aimed to estimate the disease burden of Tuberculosis (TB) and return on investment of TB care in selected high-burden countries of the Western Pacific Region (WPR) until 2030. METHODS: We projected the TB epidemic in Viet Nam and Lao People's Democratic Republic (PDR) 2020–2030 using a mathematical model under various scenarios: counterfactual (no TB care); baseline (TB care continues at current levels); and 12 different diagnosis and treatment interventions. We retrieved previous modeling results for China and the Philippines. We pooled the new and existing information on incidence and deaths in the four countries, covering >80% of the TB burden in WPR. We estimated the return on investment of TB care and interventions in Viet Nam and Lao PDR using a Solow model. FINDINGS: In the baseline scenario, TB incidence in the four countries decreased from 97•0/100,000/year (2019) to 90•1/100,000/year (2030), and TB deaths from 83,300/year (2019) to 71,100/year (2030). Active case finding (ACF) strategies (screening people not seeking care for respiratory symptoms) were the most effective single interventions. Return on investment (2020–2030) for TB care in Viet Nam and Lao PDR ranged US$4-US$49/dollar spent; additional interventions brought up to US$2•7/dollar spent. INTERPRETATION: In the modeled countries, TB incidence will only modestly decrease without additional interventions. Interventions that include ACF can reduce TB burden but achieving the End TB incidence and mortality targets will be difficult without new transformational tools (e.g. vaccine, new diagnostic tools, shorter treatment). However, TB care, even at its current level, can bring a multiple-fold return on investment. FUNDING: World Health Organization Western Pacific Regional Office; Swiss National Science Foundation Grant 163878.
Background: We aimed to estimate the disease burden of Tuberculosis (TB) and return on investment of TB care in selected high-burden countries of the Western Pacific Region (WPR) until 2030. Methods: We projected the TB epidemic in Viet Nam and Lao People's Democratic Republic (PDR) 2020–2030 using a mathematical model under various scenarios: counterfactual (no TB care); baseline (TB care continues at current levels); and 12 different diagnosis and treatment interventions. We retrieved previous modeling results for China and the Philippines. We pooled the new and existing information on incidence and deaths in the four countries, covering >80% of the TB burden in WPR. We estimated the return on investment of TB care and interventions in Viet Nam and Lao PDR using a Solow model. Findings: In the baseline scenario, TB incidence in the four countries decreased from 97•0/100,000/year (2019) to 90•1/100,000/year (2030), and TB deaths from 83,300/year (2019) to 71,100/year (2030). Active case finding (ACF) strategies (screening people not seeking care for respiratory symptoms) were the most effective single interventions. Return on investment (2020–2030) for TB care in Viet Nam and Lao PDR ranged US$4-US$49/dollar spent; additional interventions brought up to US$2•7/dollar spent. Interpretation: In the modeled countries, TB incidence will only modestly decrease without additional interventions. Interventions that include ACF can reduce TB burden but achieving the End TB incidence and mortality targets will be difficult without new transformational tools (e.g. vaccine, new diagnostic tools, shorter treatment). However, TB care, even at its current level, can bring a multiple-fold return on investment.
Background: We aimed to estimate the disease burden of Tuberculosis (TB) and return on investment of TB care in selected high-burden countries of the Western Pacific Region (WPR) until 2030. Methods: We projected the TB epidemic in Viet Nam and Lao People's Democratic Republic (PDR) 2020–2030 using a mathematical model under various scenarios: counterfactual (no TB care); baseline (TB care continues at current levels); and 12 different diagnosis and treatment interventions. We retrieved previous modeling results for China and the Philippines. We pooled the new and existing information on incidence and deaths in the four countries, covering >80% of the TB burden in WPR. We estimated the return on investment of TB care and interventions in Viet Nam and Lao PDR using a Solow model. Findings: In the baseline scenario, TB incidence in the four countries decreased from 97•0/100,000/year (2019) to 90•1/100,000/year (2030), and TB deaths from 83,300/year (2019) to 71,100/year (2030). Active case finding (ACF) strategies (screening people not seeking care for respiratory symptoms) were the most effective single interventions. Return on investment (2020–2030) for TB care in Viet Nam and Lao PDR ranged US$4-US$49/dollar spent; additional interventions brought up to US$2•7/dollar spent. Interpretation: In the modeled countries, TB incidence will only modestly decrease without additional interventions. Interventions that include ACF can reduce TB burden but achieving the End TB incidence and mortality targets will be difficult without new transformational tools (e.g. vaccine, new diagnostic tools, shorter treatment). However, TB care, even at its current level, can bring a multiple-fold return on investment.
Background Many individuals who survive tuberculosis disease face ongoing disability and elevated mortality risks. However, the impact of post-tuberculosis sequelae is generally omitted from policy analyses and disease burden estimates. We therefore estimated the global burden of tuberculosis, inclusive of post-tuberculosis morbidity and mortality. Methods We constructed a hypothetical cohort of individuals developing tuberculosis in 2019, including pulmonary and extrapulmonary disease. We simulated lifetime health outcomes for this cohort, stratified by country, age, sex, HIV status, and treatment status. We used disability-adjusted life-years (DALYs) to summarise fatal and non-fatal health losses attributable to tuberculosis, during the disease episode and afterwards. We estimated post-tuberculosis mortality and morbidity based on the decreased lung function caused by pulmonary tuberculosis disease. Findings Globally, we estimated 122 (95% uncertainty interval [UI] 98–151) million DALYs due to incident tuberculosis disease in 2019, with 58 (38–83) million DALYs attributed to post-tuberculosis sequelae, representing 47% (95% UI 37–57) of the total burden estimate. The increase in burden from post-tuberculosis varied substantially across countries and regions, driven largely by differences in estimated case fatality for the disease episode. We estimated 12·1 DALYs (95% UI 10·0–14·9) per incident tuberculosis case, of which 6·3 DALYs (5·6–7·0) were from the disease episode and 5·8 DALYs (3·8–8·3) were from post-tuberculosis. Per-case post-tuberculosis burden estimates were greater for younger individuals, and in countries with high incidence rates. The burden of post-tuberculosis was spread over the remaining lifetime of tuberculosis survivors, with almost a third of total DALYs (28%, 95% UI 23–34) accruing 15 or more years after incident tuberculosis. Interpretation Post-tuberculosis sequelae add substantially to the overall disease burden caused by tuberculosis. This hitherto unquantified burden has been omitted from most previous policy analyses. Future policy analyses and burden estimates should take better account of post-tuberculosis, to avoid the potential misallocation of funding, political attention, and research effort resulting from continued neglect of this issue.
BACKGROUND: To mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020. AIM: To assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era. METHODS: We used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests. RESULTS: Quarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89–98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98–100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83–95)). CONCLUSION: The effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.