The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time-evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5. ; National Science Foundation (NSF)National Science Foundation (NSF); National Center for Atmospheric Research - NSF [1852977]; RUBISCO Scientific Focus Area (SFA) - Regional and Global Climate Modeling (RGCM) Program in the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science; Columbia University Presidential Fellowship; U.S. Department of Agriculture NIFA Award [2015-67003-23485]; NASA Interdisciplinary Science Program Award [NNX17AK19G]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science programUnited States Department of Energy (DOE) [DE-SC0008317, DESC0016188]; National Science FoundationNational Science Foundation (NSF) [DEB-1153401]; NASA's CARBON program; NASA's TE program; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA) ; We would like to thank the reviewers for their insightful comments and helpful suggestions that improved the clarity and presentation of the manuscript. The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. D. M. L. was supported in part by the RUBISCO Scientific Focus Area (SFA), which is sponsored by the Regional and Global Climate Modeling (RGCM) Program in the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science. D. K. and P. G. were supported by Columbia University Presidential Fellowship. G. B., D. L. L., W. R. W., and R. Q. T. were supported by the U.S. Department of Agriculture NIFA Award 2015-67003-23485. W. R. W. and G. K. A. were supported by the NASA Interdisciplinary Science Program Award NNX17AK19G. J. B. F. and M. S. carried out the research in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. California Institute of Technology. Government sponsorship acknowledged. All rights reserved. J. B. F. and M. S. were supported in part by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science program under Awards DE-SC0008317 and DESC0016188; the National Science Foundation Ecosystem Science program (DEB-1153401); and NASA's CARBON and TE programs. All model data are archived and publicly available at the UCAR/NCAR Climate Data Gateway (https://doi.org/10.5065/d6154fwh).
In: Quéré , C , Andrew , R , Friedlingstein , P , Sitch , S , Hauck , J , Pongratz , J , Pickers , P , Ivar Korsbakken , J , Peters , G , Canadell , J , Arneth , A , Arora , V , Barbero , L , Bastos , A , Bopp , L , Ciais , P , Chini , L , Ciais , P , Doney , S , Gkritzalis , T , Goll , D , Harris , I , Haverd , V , Hoffman , F , Hoppema , M , Houghton , R , Hurtt , G , Ilyina , T , Jain , A , Johannessen , T , Jones , C , Kato , E , Keeling , R , Klein Goldewijk , K , Landschützer , P , Lefèvre , N , Lienert , S , Liu , Z , Lombardozzi , D , Metzl , N , Munro , D , Nabel , J , Nakaoka , S I , Neill , C , Olsen , A , Ono , T , Patra , P , Peregon , A , Peters , W , Peylin , P , Pfeil , B , Pierrot , D , Poulter , B , Rehder , G , Resplandy , L , Robertson , E , Rocher , M , Rödenbeck , C , Schuster , U , Skjelvan , I , Séférian , R , Skjelvan , I , Steinhoff , T , Sutton , A , Tans , P , Tian , H , Tilbrook , B , Tubiello , F , Van Der Laan-Luijkx , I , Van Der Werf , G , Viovy , N , Walker , A , Wiltshire , A , Wright , R , Zaehle , S & Zheng , B 2018 , ' Global Carbon Budget 2018 ' , Earth System Science Data , vol. 10 , no. 4 , pp. 2141-2194 . https://doi.org/10.5194/essd-10-2141-2018
Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( E FF ) are based on energy statistics and cement production data, while emissions from land use and land-use change ( E LUC ), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( G ATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( S OCEAN ) and terrestrial CO2 sink ( S LAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ . For the last decade available (2008-2017), E FF was 9.4±0.5 GtC yr ĝ'1 , E LUC 1.5±0.7 GtC yr ĝ'1 , G ATM 4.7±0.02 GtC yr ĝ'1 , S OCEAN 2.4±0.5 GtC yr ĝ'1 , and S LAND 3.2±0.8 GtC yr ĝ'1 , with a budget imbalance B IM of 0.5 GtC yr ĝ'1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E FF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr ĝ'1 . Also for 2017, E LUC was 1.4±0.7 GtC yr ĝ'1 , G ATM was 4.6±0.2 GtC yr ĝ'1 , S OCEAN was 2.5±0.5 GtC yr ĝ'1 , and S LAND was 3.8±0.8 GtC yr ĝ'1 , with a B IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E FF of + 2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr ĝ'1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013).
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013)
Accurate assessment of anthropogenic carbon dioxide (CO₂) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO₂ emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO₂ concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO₂ sink (SOCEAN) and terrestrial CO₂ sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4 ± 0.5 GtC yr⁻¹, ELUC 1.5 ± 0.7 GtC yr⁻¹ , GATM 4.7 ± 0.02 GtC yr⁻¹, SOCEAN 2.4 ± 0.5 GtC yr⁻¹, and SLAND 3.2 ± 0.8 GtC yr⁻¹ , with a budget imbalance BIM of 0.5 GtC yr⁻¹ indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9 ± 0.5 GtC yr⁻¹. Also for 2017, ELUC was 1.4 ± 0.7 GtC yr⁻¹ , GATM was 4.6 ± 0.2 GtC yr⁻¹, SOCEAN was 2.5 ± 0.5 GtC yr⁻¹, and SLAND was 3.8 ± 0.8 GtC yr⁻¹, with a BIM of 0.3 GtC. The global atmospheric CO₂ concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr⁻¹ persist for the representation of semi-decadal variability in CO₂ fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO₂ flux in the northern extra-tropics, and (3) an apparent underestimation of the CO₂ variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013)
Accurate assessment of anthropogenic carbon dioxide ( CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO 2 emissions ( E FF ) are based on energy statistics and cement production data, while emissions from land use and land-use change ( E LUC ), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO 2 concentration is measured directly and its growth rate ( G ATM ) is computed from the annual changes in concentration. The ocean CO 2 sink ( S OCEAN ) and terrestrial CO 2 sink ( S LAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ . For the last decade available (2008–2017), E FF was 9.4±0.5 GtC yr −1 , E LUC 1.5±0.7 GtC yr −1 , G ATM 4.7±0.02 GtC yr −1 , S OCEAN 2.4±0.5 GtC yr −1 , and S LAND 3.2±0.8 GtC yr −1 , with a budget imbalance B IM of 0.5 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E FF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr −1 . Also for 2017, E LUC was 1.4±0.7 GtC yr −1 , G ATM was 4.6±0.2 GtC yr −1 , S OCEAN was 2.5±0.5 GtC yr −1 , and S LAND was 3.8±0.8 GtC yr −1 , with a B IM of 0.3 GtC. The global atmospheric CO 2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in E FF of + 2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO 2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO 2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO 2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018 .