Evolution of single-particle structure near the N=20 island of inversion
7 pags., 5 figs., 2 tabs. ; The single-particle properties of Mg29 have been investigated via a measurement of the Mg28(d,p)Mg29 reaction, in inverse kinematics, using the ISOLDE Solenoidal Spectrometer. The negative-parity intruder states from the fp shell have been identified and used to benchmark modern shell-model calculations. The systematic data on the single-particle centroids along the N=17 isotones show good agreement with shell-model predictions in describing the observed trends from stability toward O25. However, there is also evidence that the effect of the finite geometry of the nuclear potential is playing a role on the behavior of the p orbitals near the particle-emission threshold. ; This work wassupported by the U.K. Science and Technology Facilities Council [Grants No. ST/P004598/1, No. ST/N002563/1, No. ST/M00161X/1 (Liverpool), No. ST/P004423/1 (Manchester), No. ST/P005314/1 (Surrey), the ISOL-SRS Grant (Daresbury), No. ST/R004056/1 (Ernest Rutherford Fellowship - Gaffney), and No. ST/T004797/1 (Ernest Rutherford Fellowship - Sharp)], the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL) and No. DE-SC-0014552 (UConn), the European Union's Horizon 2020 Framework research and innovation program under Grant Agreement No. 654002 (ENSAR2), the Marie Skłodowska-Curie Grant Agreement No. 665779, the Research Foundation Flanders (FWO, Belgium), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 617156, and the Spanish Ministry of Science and Innovation under Grants No. PGC2018-095640- B-I00"ELEGANT" and No. PID2019-104390GB-I00. This research used targets provided by the Center for Accelerator Target Science at Argonne National Laboratory. The FSU shell-model calculations were performed using the computational facility of the nuclear physics theory group, Florida State University, supported by grants from the U.S. Department of Energy, Office of Science (DE-SC-0009883 (FSU).