We present new Jansky Very Large Array observations of five pre-Swift gamma-ray bursts for which an ultraluminous (SFR > 100 M_sun/yr) dusty host galaxy had previously been inferred from radio or submillimetre observations taken within a few years after the burst. In four of the five cases we no longer detect any source at the host location to limits much fainter than the original observations, ruling out the existence of an ultraluminous galaxy hosting any of these GRBs. We continue to detect a source at the position of GRB 980703, but it is much fainter than it was a decade ago and the inferred radio star-formation rate (~80 M_sun) is relatively modest. The radio flattening at 200-1000 days observed in the light curve of this GRB may have been caused by a decelerating counterjet oriented 180 degrees away from the viewer, although an unjetted wind model can also explain the data. Our results eliminate all well-established pre-Swift ULIRG hosts, and all cases for which an unobscured GRB was found in a galaxy dominated by heavily-obscured star-formation. When GRBs do occur in ULIRGs the afterglow is almost always observed to be heavily obscured, consistent with the large dust opacities and high dust covering fractions characteristic of these systems. ; DAP acknowledges support from a Marie Sklodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation (H2020- MSCA-IF-2014-660113). Support for this work was also provided by the National Aeronautics and Space Administration (NASA) through an award issued by JPL/Caltech. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We acknowledge useful conversations with and comments from D. A. Frail, and from D. Watson, M. Michałowski, and D. A. Kann. We thank the referee for helpful comments. We also thank A. Levan for supplying HST imaging for several of the host galaxies. ; Peer-reviewed ; Publisher Version
We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z - 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (less than or similar to 1 Gyr) "dry" merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with less than or similar to 1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r(e) similar to 3 kpc), providing an r(e)-normalized offset that is closer than similar to 90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy. ; We thank the referee for a prompt and highly constructive report that improved the content and clarity of the manuscript. We also thank the editor, Fred Rasio, for helpful comments. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0668 (A.J.L.), and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with programs GO 14771 (N.R.T.), GO 14804 (A.J.L.), and GO 14850 (E.T.). We thank the staff at ESO and STScI for their excellent support of these observations. A.J.L. acknowledges that this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 725246) A.J.L., D.S., and J.D.L. acknowledge support from STFC via grant ST/P000495/1. N.R.T., K.W., P.T.O., J.L.O., and S.R. acknowledge support from STFC. J.H. was supported by a VILLUM FONDEN Investigator grant (project number 16599). A.d.U.P., C.T., Z.C., and D.A.K. acknowledge support from the Spanish project AYA 2014-58381-P. Z.C. also acknowledges support from the Juan de la Cierva Incorporacion fellowship IJCI-2014-21669, and D.A.K. from Juan de la Cierva Incorporacion fellowship IJCI-2015-26153. M.I. was supported by the NRFK grant, No. 2017R1A3A3001362. E.T. acknowledges support from grants GO718062A and HSTG014850001A. S.R. has been supported by the Swedish Research Council (VR) under grant number 2016-03657_3, by the Swedish National Space Board under grant number Dnr. 107/16 and by the research environment grant "Gravitational Radiation and Electromagnetic Astrophysical Transients (GREAT)" funded by the Swedish Research council (VR) under Dnr 2016-06012. P.A.E. acknowledges UKSA support. ; Peer Reviewed
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared ${K}_{{\rm{s}}}$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $A\approx 195$). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe. ; HST observations were obtained using programs GO 14771 (PI: Tanvir), GO 14804 (PI: Levan), and GO 14850 (PI: Troja). VLT observations were obtained using programs 099.D-0688, 099.D-0116, and 099.D-0622. N.R.T., K.W., P.T.O., J.L.O., and S.R. acknowledge support from STFC. A.J.L., D.S., and J.D.L. acknowledge support from STFC via grant ST/P000495/1. N.R.T. and A.J.L. have received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. 725246, TEDE, Levan). Ad.U.P., C.T., Z.C., and D.A.K. acknowledge support from the Spanish project AYA 2014-58381-P. Z.C. also acknowledges support from the Juan de la Cierva Incorporacion fellowship IJCI-2014-21669, and D.A.K. from Juan de la Cierva Incorporacion fellowship IJCI-2015-26153. J.H. is supported by a VILLUM FONDEN Investigator grant (project number 16599). P.D.A., S.C., and A.M. acknowledge support from the ASI grant I/004/11/3. S.R. has been supported by the Swedish Research Council (VR) under grant No. 2016-03657_3, by the Swedish National Space Board under grant No. Dnr. 107/16, and by the research environment grant "Gravitational Radiation and Electromagnetic Astrophysical Transients (GREAT)" funded by the Swedish Research council (VR) under Dnr 2016-06012. P.A.E. acknowledges UKSA support. The VISTA observations were processed by C.G.F. at the Cambridge Astronomy Survey Unit (CASU), which is funded by the UK Science and Technology Research Council under grant ST/N005805/1. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under contract No. DE-AC52-06NA25396. Based on observations made with the Nordic Optical Telescope (program 55-013, PI Pian), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. ; Peer Reviewed
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall. ; DFG Kl 766/13-2 ; NASA NNG 05GC22G, NNG06GH62G ; Spanish research programs ESP2005-07714-C03-03, AYA2004-01515 ; Instrument Center for Danish Astrophysics ; Danish National Science Fundation G2007101421517916 ; CRDF RP1-2394-MO-02 ; TUBITAK ; IKI ; KSU RTT150, 998,999 ; Korea government (MEST) 2010-0000712 ; NSh-4224.2008.2 ; RFBR-09-02-97013-p-povolzh'e-a ; Astronomy
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck Society ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Commission ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Canadian Institute for Advanced Research ; Brazilian Ministry of Science, Technology, and Innovation ; Russian Foundation for Basic Research ; Leverhulme Trust ; Research Corporation ; Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Australian Government ; National Collaborative Research Infrastructure Strategy ; Government of Western Australia ; United States Department of Energy ; United States National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under European Union's Seventh Framework Programme ; ERC ; NASA (United States) ; DOE (United States) ; IN2P3/CNRS (France) ; CEA/Irfu (France) ; ASI (Italy) ; INFN (Italy) ; MEXT (Japan) ; KEK (Japan) ; JAXA (Japan) ; Wallenberg Foundation ; Swedish Research Council ; National Space Board (Sweden) ; NASA in the United States ; DRL in Germany ; INAF for the project Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments ; ESA (Denmark) ; ESA (France) ; ESA (Germany) ; ESA (Italy) ; ESA (Switzerland) ; ESA (Spain) ; German INTEGRAL through DLR grant ; US under NASA Grant ; National Science Foundation PIRE program grant ; Hubble Fellowship ; KAKENHI of MEXT Japan ; JSPS ; Optical and Near-Infrared Astronomy Inter-University Cooperation Program - MEXT ; UK Science and Technology Facilities Council ; ERC Advanced Investigator Grant ; Lomonosov Moscow State University Development programm ; Moscow Union OPTICA ; Russian Science Foundation ; National Research Foundation of South Africa ; Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS) ; NVIDIA at Harvard University ; University of Hawaii ; National Aeronautics and Space Administration's Planetary Defense Office ; Queen's University Belfast ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate ; European Research Council under European Union's Seventh Framework Programme/ERC ; STFC grants ; European Union FP7 programme through ERC ; STFC through an Ernest Rutherford Fellowship ; FONDECYT ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; NASA in the US ; UK Space Agency in the UK ; Agenzia Spaziale Italiana (ASI) in Italy ; Ministerio de Ciencia y Tecnologia (MinCyT) ; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina ; USA NSF PHYS ; NSF ; ICREA ; Science and Technology Facilities Council ; UK Space Agency ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1238877 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; German INTEGRAL through DLR grant: 50 OG 1101 ; US under NASA Grant: NNX15AU74G ; National Science Foundation PIRE program grant: 1545949 ; Hubble Fellowship: HST-HF-51325.01 ; KAKENHI of MEXT Japan: 24103003 ; KAKENHI of MEXT Japan: 15H00774 ; KAKENHI of MEXT Japan: 15H00788 ; JSPS: 15H02069 ; JSPS: 15H02075 ; ERC Advanced Investigator Grant: 267697 ; Russian Science Foundation: 16-12-00085 ; Russian Science Foundation: RFBR15-02-07875 ; National Aeronautics and Space Administration's Planetary Defense Office: NNX14AM74G ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate: NNX08AR22G ; European Research Council under European Union's Seventh Framework Programme/ERC: 291222 ; STFC grants: ST/I001123/1 ; STFC grants: ST/L000709/1 ; European Union FP7 programme through ERC: 320360 ; FONDECYT: 3140326 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; USA NSF PHYS: 1156600 ; NSF: 1242090 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/N000668/1 ; Science and Technology Facilities Council: ST/M000966/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000709/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/K00090X/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/H001972/1 ; Science and Technology Facilities Council: ST/L000733/1 ; Science and Technology Facilities Council: ST/N000757/1 ; Science and Technology Facilities Council: ST/M001334/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/M003035/1 ; Science and Technology Facilities Council: ST/I001123/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/L003465/1 ; UK Space Agency: ST/P002196/1 ; This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.