An AMUSING look at the host of the periodic nuclear transient ASASSN-14ko reveals a second AGN
We present Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectroscopy of ESO 253-G003, which hosts a known active galactic nucleus (AGN) and the periodic nuclear transient ASASSN-14ko, observed as part of the All-weather MUse Supernova Integral-field of Nearby Galaxies survey. The MUSE observations reveal that the inner region hosts two AGN separated by 1.4±0.1 kpc (≍1 ′′. 7). The brighter nucleus has asymmetric broad permitted emission-line profiles and is associated with the archival AGN designation. The fainter nucleus does not have a broad emission-line component but exhibits other AGN characteristics, including vFWHM≈700 km~s−1 forbidden line emission, log10([OIII]/Hβ)≈1.1 , and high-excitation potential emission lines, such as [Fe VII] λ6086 and He II λ4686. The host galaxy exhibits a disturbed morphology with large kpc-scale tidal features, potential outflows from both nuclei, and a likely superbubble. A circular relativistic disc model cannot reproduce the asymmetric broad emission-line profiles in the brighter nucleus, but two non-axisymmetric disc models provide good fits to the broad emission-line profiles: an elliptical disc model and a circular disc + spiral arm model. Implications for the periodic nuclear transient ASASSN-14ko are discussed. ; MAT acknowledges support from the DOE CSGF through grant no. DE-SC0019323. BJS and CSK are supported by NSF grant no. AST-1907570. BJS is also supported by NASA grant no. 80NSSC19K1717 and NSF grants AST-1920392 and AST-1911074. CSK is supported by NSF grant no. AST-181440. KAA is supported by the Danish National Research Foundation (DNRF132). Support for JLP is provided in part by FONDECYT through grant n.1191038 and by the Ministry for the Economy, Development, and Tourism's Millennium Science Initiative through grant no. IC120009, awarded to The Millennium Institute of Astrophysics, MAS. LG acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICIU) under the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090, and partially supported by the Spanish grant no. PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Support for TW-SH was provided by NASA through the NASA Hubble Fellowship grant no. #HST-HF2-51458.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programme 096.D-0296(A). ; Peer reviewed