We report on the evolution of tropospheric nitrogen dioxide (NO 2) over Spain, focusing on the densely populated cities of Barcelona, Bilbao, Madrid, Sevilla and Valencia, during 17 years, from 1996 to 2012. This data series combines observations from in-situ air quality monitoring networks and the satellite-based instruments GOME and SCIAMACHY. The results in these five cities show a smooth decrease in the NO 2 concentrations of ∼2% per year in the period 1996-2008, due to the implementation of emissions control environmental legislation, and a more abrupt descend of ∼7% per year from 2008 to 2012 as a consequence of the economic recession. In the whole Spanish territory the NO 2 levels have decreased by ∼22% from 1996 to 2012. Statistical analysis of several economic indicators is used to investigate the different factors driving the NO 2 concentration trends over Spain during the last two decades. ; Peer Reviewed
This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), an online chemical weather prediction system conceived for both the regional and the global scale. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (RMSE below 9 μg m−3). The modeled vertical distribution of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modelled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model generally captures the spatial and seasonal trends of background surface O3 and its vertical distribution. However, the model tends to overestimate O3 throughout the troposphere in several stations. This is attributed to an overestimation of CO concentration over the southern hemisphere leading to an excessive production of O3. Overall, O3 correlations range between 0.6 to 0.8 for daily mean values. The overall performance of the NMMB/BSC-CTM is comparable to that of other state-of-the-art global chemical transport models. ; The authors wish to thank WOUDC, GAW, EMEP, WDCGG, CASTNET-EPA, NADP and EANET for the provision of measurement stations. Also, thanks go to the free use of the MOPITT CO data obtained from the NASA Langley Research Center Atmospheric Science Data Center. SCIAMACHY radiances have been provided by ESA. This work is funded by grants CGL2013-46736-R, Supercomputación and e-ciencia Project (CSD2007-0050) from the Consolider-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness. Further support was provided by the SEV-2011-00067 grant of the Severo Ochoa Program, awarded by the Spanish Government. A.H. received funding from the Earth System Science Research School (ESSReS), an initiative of the Helmholtz Association of German research centres (HGF) at the AlfredWegener Institute for Polar and Marine Research. All the numerical simulations were performed with the MareNostrum Supercomputer hosted by the Barcelona Supercomputing Center. We also thank Beatriz Monge-Sanz for providing the COPCAT coefficients. ; Peer Reviewed ; Postprint (author's final draft)
This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), an online chemical weather prediction system conceived for both the regional and the global scale. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (RMSE below 9 μg m−3). The modeled vertical distribution of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modelled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model generally captures the spatial and seasonal trends of background surface O3 and its vertical distribution. However, the model tends to overestimate O3 throughout the troposphere in several stations. This is attributed to an overestimation of CO concentration over the southern hemisphere leading to an excessive production of O3. Overall, O3 correlations range between 0.6 to 0.8 for daily mean values. The overall performance of the NMMB/BSC-CTM is comparable to that of other state-of-the-art global chemical transport models. ; The authors wish to thank WOUDC, GAW, EMEP, WDCGG, CASTNET-EPA, NADP and EANET for the provision of measurement stations. Also, thanks go to the free use of the MOPITT CO data obtained from the NASA Langley Research Center Atmospheric Science Data Center. SCIAMACHY radiances have been provided by ESA. This work is funded by grants CGL2013-46736-R, Supercomputación and e-ciencia Project (CSD2007-0050) from the Consolider-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness. Further support was provided by the SEV-2011-00067 grant of the Severo Ochoa Program, awarded by the Spanish Government. A.H. received funding from the Earth System Science Research School (ESSReS), an initiative of the Helmholtz Association of German research centres (HGF) at the AlfredWegener Institute for Polar and Marine Research. All the numerical simulations were performed with the MareNostrum Supercomputer hosted by the Barcelona Supercomputing Center. We also thank Beatriz Monge-Sanz for providing the COPCAT coefficients. ; Peer Reviewed ; Postprint (author's final draft)
This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error – RMSE – below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model generally captures the spatial and seasonal trends of background surface O3 and its vertical distribution. However, the model tends to overestimate O3 throughout the troposphere in several stations. This may be attributed to an overestimation of CO concentration over the Southern Hemisphere leading to an excessive production of O3 or to the lack of specific chemistry (e.g., halogen chemistry, aerosol chemistry). Overall, O3 correlations range between 0.6 and 0.8 for daily mean values. The overall performance of the NMMB-MONARCH is comparable to that of other state-of-the-art global chemistry models. ; The authors wish to thank WOUDC, GAW, EMEP, WDCGG, CASTNET-EPA, NADP and EANET for the provision of measurement stations. The authors acknowledge for the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC database is supported by ETHER (CNES and INSU-CNRS). Also, thanks go to the free use of the MOPITTCO data obtained from the NASA Langley Research Center Atmospheric Science Data Center. SCIAMACHY radiances have been provided by ESA. We also thank Beatriz Monge-Sanz for providing the COPCAT coefficients. This work is funded by grants CGL2013-46736-R, Supercomputación and e-ciencia Project (CSD2007-0050) from the Consolider-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness. Further support was provided by the SEV-2011-00067 grant of the Severo Ochoa Program, awarded by the Spanish Government. Andreas Hilboll received funding from the Earth System Science Research School (ESSReS), an initiative of the Helmholtz Association of German research centres (HGF) at the Alfred Wegener Institute for Polar and Marine Research. Carlos Pérez García-Pando acknowledges long-term support from the AXA Research Fund. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-AECT-2015-1-0007). Comments from two anonymous reviewers are gratefully acknowledge. ; Peer Reviewed ; Postprint (published version)
This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error – RMSE – below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model generally captures the spatial and seasonal trends of background surface O3 and its vertical distribution. However, the model tends to overestimate O3 throughout the troposphere in several stations. This may be attributed to an overestimation of CO concentration over the Southern Hemisphere leading to an excessive production of O3 or to the lack of specific chemistry (e.g., halogen chemistry, aerosol chemistry). Overall, O3 correlations range between 0.6 and 0.8 for daily mean values. The overall performance of the NMMB-MONARCH is comparable to that of other state-of-the-art global chemistry models. ; The authors wish to thank WOUDC, GAW, EMEP, WDCGG, CASTNET-EPA, NADP and EANET for the provision of measurement stations. The authors acknowledge for the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC database is supported by ETHER (CNES and INSU-CNRS). Also, thanks go to the free use of the MOPITTCO data obtained from the NASA Langley Research Center Atmospheric Science Data Center. SCIAMACHY radiances have been provided by ESA. We also thank Beatriz Monge-Sanz for providing the COPCAT coefficients. This work is funded by grants CGL2013-46736-R, Supercomputación and e-ciencia Project (CSD2007-0050) from the Consolider-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness. Further support was provided by the SEV-2011-00067 grant of the Severo Ochoa Program, awarded by the Spanish Government. Andreas Hilboll received funding from the Earth System Science Research School (ESSReS), an initiative of the Helmholtz Association of German research centres (HGF) at the Alfred Wegener Institute for Polar and Marine Research. Carlos Pérez García-Pando acknowledges long-term support from the AXA Research Fund. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-AECT-2015-1-0007). Comments from two anonymous reviewers are gratefully acknowledge. ; Peer Reviewed ; Postprint (published version)
International audience ; Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for ...
The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the ...
Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for NO2 and at most −20% for ...
International audience ; Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for NO2 and at most −20% for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterization and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
International audience ; Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for NO2 and at most −20% for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterization and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
International audience ; Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between −30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between −110 and 40% for NO2 and at most −20% for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterization and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
30 pags., 13 figs., 4 tabs. ; We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multiaxis differential optical absorption spectroscopy (MAXDOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI- 2) in September 2016 at Cabauw, the Netherlands (51.97° N, 4.93° E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of ±0:3×1015 molec. cm2, which is half of the typical random discrepancy of 0:6× 1015 molec. cm2. For a typical high HONO delta SCD of 2×1015 molec. cm2, the relative systematic and random discrepancies are about 15% and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and nearsurface volume mixing ratios (VMRs) are mostly in the range of ∼ ±0:5×1014 molec. cm2 and ∼ ±0:1 ppb (typically ∼ 20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ∼ 5 %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ∼ 3×1014 molec. cm2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ∼ 0:4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAXDOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements. ; Funding for this study was provided by ESA through the CINDI-2 (ESA contract no. 4000118533/16/I-Sbo) and FRM4DOAS (ESA contract no. 4000118181/16/I-EF) projects, by the NSFC (grant no. 41805027), the Russian Foundation for Basic Research (grant no. 18-35-00682), the Russian Academy of Sciences (grant nos. 0150-2018-0052 and 0129-2019- 0002), NASA's Atmospheric Composition Program (grant no. NASA-16-NUP2016-0001), the US National Science Foundation (AGS-1620530 award), and the European Union's Horizon 2020 research and innovation programme through the ACTRIS-2 transnational access programme (grant no. 654109). The AIOFM group is grateful for the support by the NSFC (grant no. 41530644). The article processing charges for this open-access publication were covered by the Max Planck Society