Carbonyl-trapping abilities of 5-alkylresorcinols
8 Páginas.-- 6 Figuras ; In an attempt to investigate the carbonyl-trapping abilities of 5-alkylresorcinols, this study describes the role of these compounds in inhibiting the formation of the 2,5-dialkylpyridines (5-ethyl-2-methylpyridine, 5-butyl-2-propylpyridine, and 5-hexyl-2-pentylpyridine) produced by 2-alkenals (crotonaldehyde, 2-hexenal, and 2-octenal) in the presence of ammonia. 5-Alkylresorcinols (as well as orcinol and olivetol) inhibited the formation of pyridines to an extend that depended on the 2-alkenal involved and the reaction conditions. This inhibition was consequence of the trapping of 2-alkenals by the phenolics. Thus, the major adducts produced between the C21:0 alkylresorcinol and crotonaldehyde were isolated and characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). These results confirm that, in addition to their free radical scavenging abilities, 5-alkylresorcinols also trap reactive carbonyls. Because trapped carbonyls are involved in the formation of flavors and processing-induced antioxidants, 5-alkylresorcinols might be implied in some of the observed differences between whole and refined grain products. ; This study was funded by the Ministerio de Ciencia e Innovación (MCIN) from Spain, the Agencia Estatal de Investigación (AEI) from Spain, and the Fondo Europeo de Desarrollo Regional (ERDF, a way of making Europe) from the European Union (Project RTI2018-096632-B-I00/AEI/10.13039/501100011033). ; Peer reviewed