Algorithmic robustness to preferred orientations in single particle analysis by CryoEM
The presence of preferred orientations in single particle analysis (SPA) by cryo-Electron Microscopy (cryoEM) is currently one of the hurdles preventing many structural analyses from yielding high-resolution structures. Although the existence of preferred orientations is mostly related to the grid preparation, in this technical note, we show that some image processing algorithms used for angular assignment and three-dimensional (3D) reconstruction are more robust than others to these detrimental conditions. We exemplify this argument with three different data sets in which the presence of preferred orientations hindered achieving a 3D reconstruction without artifacts or, even worse, a 3D reconstruction could never be achieved ; We acknowledge support from "la Caixa" Foundation (Fellowship LCF/BQ/DI18/11660021. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 713673. We also thank the financial support from the Spanish Ministry of Economy and Competitiveness through Grants BIO2016-76400-R(AEI/FEDER, UE) and SEV 2017-0712, the "Comunidad Autónoma de Madrid" through Grant: S2017/BMD-3817, Instituto de Salud Carlos III, PT17/ 0009/0010 (ISCIII-SGEFI/ERDF), European Union (EU) and Horizon 2020 through grants: CORBEL (INFRADEV-1-2014-1, Proposal: 654248), INSTRUCT-ULTRA (INFRADEV-03-2016-2017, Proposal: 731005), EOSC Life (INFRAEOSC-04-2018, Proposal: 824087), High- ResCells (ERC-2018-SyG, Proposal: 810057), IMpaCT (WIDESPREAD-03-2018 – Proposal: 857203), EOSC-Synergy (EINFRA-EOSC-5, Proposal: 857647), and iNEXT-Discovery (Proposal: 871037). The authors acknowledge the support and the use of resources of Instruct, a Landmark ESFRI project