Analysis of bio-anode performance through electrochemical impedance spectroscopy
In this paper we studied the performance of bioanodes under different experimental conditions using polarization curves and impedance spectroscopy. We have identified that the large capacitances of up to 1 mF·cm− 2 for graphite anodes have their origin in the nature of the carbonaceous electrode, rather than the microbial culture. In some cases, the separate contributions of charge transfer and diffusion resistance were clearly visible, while in other cases their contribution was masked by the high capacitance of 1 mF·cm− 2. The impedance data were analyzed using the basic Randles model to analyze ohmic, charge transfer and diffusion resistances. Increasing buffer concentration from 0 to 50 mM and increasing pH from 6 to 8 resulted in decreased charge transfer and diffusion resistances; lowest values being 144 Ω·cm2 and 34 Ω·cm2, respectively. At acetate concentrations below 1 mM, current generation was limited by acetate. We show a linear relationship between inverse charge transfer resistance at potentials close to open circuit and saturation (maximum) current, associated to the Butler–Volmer relationship that needs further exploration. ; The authors wish to acknowledge funding from the European Union Seventh Framework Programme (FP7/2012-2016) project 'Bioelectrochemical systems for metal production, recycling, and remediation' under grant agreement no. 282970. AtH is supported by a NWO VENI grant no. 13631. OS was supported by the French environmental agency ADEME, by the Region Bretagne and by Rennes Metropole when doing the experiments. This work was performed in the cooperation framework of Wetsus, Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the European Union Regional Development Fund, the Province of Fryslân, and the Northern Netherlands Provinces.