A Realist's Ideal Pursuit
In: The Chinese journal of international politics, Band 5, Heft 2, S. 183-197
ISSN: 1750-8924
11 Ergebnisse
Sortierung:
In: The Chinese journal of international politics, Band 5, Heft 2, S. 183-197
ISSN: 1750-8924
In: International relations of the Asia-Pacific: a journal of the Japan Association of International Relations, Band 8, Heft 1, S. 47-72
ISSN: 1470-4838
In: The Chinese journal of international politics, Band 6, Heft 3, S. 209-231
ISSN: 1750-8924
In: Gerontechnology: international journal on the fundamental aspects of technology to serve the ageing society, Band 11, Heft 2
ISSN: 1569-111X
In: Gerontechnology: international journal on the fundamental aspects of technology to serve the ageing society, Band 11, Heft 2
ISSN: 1569-111X
In: Natural hazards and earth system sciences: NHESS, Band 14, Heft 9, S. 2627-2635
ISSN: 1684-9981
Abstract. Calcareous mountainous areas are highly prone to geohazards, and rockslides play an important role in cliff retreat. This study presents three examples of failures of limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China. Field observations and numerical modeling of Yudong Escarpment, Zengzi Cliff, and Wangxia Cliff showed that pre-existing vertical joints passing through thick limestone and the alternation of competent and incompetent layers are the most significant features for rockslides. A "hard-on-soft" cliff made of hard rocks superimposed on soft rocks is prone to rock slump, characterized by shearing through the underlying weak strata along a curved surface and backward tilting. When a slope contains weak interlayers rather than a soft basal, a rock collapse could occur from the compression fracture and tensile split of the rock mass near the interfaces. A rockslide might shear through a hard rock mass if no discontinuities are exposed in the cliff slope, and sliding may occur along a moderately inclined rupture plane. The "toe breakout" mechanism mainly depends on the strength characteristics of the rock mass.
In: Community ecology: CE ; interdisciplinary journal reporting progress in community and population studies, Band 14, Heft 2, S. 172-179
ISSN: 1588-2756
Nitrogen oxides (NO x ) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NO x emissions in China for the period 1995–2010, and calculated future NO x emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NO x emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NO x emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NO x emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NO x emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NO x emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NO x emission reductions. About 30% of the NO x emission reduction in 2020 and 40% of the NO x emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.
BASE
Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995–2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.
BASE
Executive summary The Lancet Countdown is an international collaboration that independently monitors the health consequences of a changing climate. Publishing updated, new, and improved indicators each year, the Lancet Countdown represents the consensus of leading researchers from 43 academic institutions and UN agencies. The 44 indicators of this report expose an unabated rise in the health impacts of climate change and the current health consequences of the delayed and inconsistent response of countries around the globe—providing a clear imperative for accelerated action that puts the health of people and planet above all else. The 2021 report coincides with the UN Framework Convention on Climate Change 26th Conference of the Parties (COP26), at which countries are facing pressure to realise the ambition of the Paris Agreement to keep the global average temperature rise to 1·5°C and to mobilise the financial resources required for all countries to have an effective climate response. These negotiations unfold in the context of the COVID-19 pandemic—a global health crisis that has claimed millions of lives, affected livelihoods and communities around the globe, and exposed deep fissures and inequities in the world's capacity to cope with, and respond to, health emergencies. Yet, in its response to both crises, the world is faced with an unprecedented opportunity to ensure a healthy future for all. Deepening inequities in a warming world Record temperatures in 2020 resulted in a new high of 3·1 billion more person-days of heatwave exposure among people older than 65 years and 626 million more person-days affecting children younger than 1 year, compared with the annual average for the 1986–2005 baseline (indicator 1.1.2). Looking to 2021, people older than 65 years or younger than 1 year, along with people facing social disadvantages, were the most affected by the record-breaking temperatures of over 40°C in the Pacific Northwest areas of the USA and Canada in June, 2021— an event that would have been almost ...
BASE
Using the data sets taken at center-of-mass energies above 4 GeV by the BESIII detector at the BEPCII storage ring, we search for the reaction e(+)e(-) -> gamma(ISR) X(3872) -> gamma(ISR)pi(+)pi(-) J/psi via the Initial State Radiation technique. The production of a resonance with quantum numbers J(PC) = 1(++) such as the X(3872) via single photon e(+)e(-) annihilation is forbidden, but is allowed by a next-to-leading order box diagram. We do not observe a significant signal of X(3872), and therefore give an upper limit for the electronic width times the branching fraction Gamma B-X(3872)(ee)(X(3872) -> pi(+)pi(-) J/psi) < 0.13 eVat the 90% confidence level. This measurement improves upon existing limits by a factor of 46. Using the same final state, we also measure the electronic width of the psi(3686) to be Gamma(psi)(ee)(3686) ee = 2213 +/- 18(stat) +/- 99(sys) eV. ; Funding: The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contract Nos. 11125525, 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract Nos. 11179007, U1232201, U1332201; CAS under Contract Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. CRC-1044; Seventh Framework Programme of the European Union under Marie Curie International Incoming Fellowship Grant Agreement No. 627240; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contract Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fur Schwerionenforschung (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
BASE