Zur Rechtsprechung - Verfassungsrechtliche Grenzen des Denkmalschutzes
In: Neue Zeitschrift für Verwaltungsrecht: NVwZ ; vereinigt mit Verwaltungsrechtsprechung, Band 19, Heft 1, S. 46
ISSN: 0721-880X
8 Ergebnisse
Sortierung:
In: Neue Zeitschrift für Verwaltungsrecht: NVwZ ; vereinigt mit Verwaltungsrechtsprechung, Band 19, Heft 1, S. 46
ISSN: 0721-880X
In: Neue Zeitschrift für Verwaltungsrecht: NVwZ ; vereinigt mit Verwaltungsrechtsprechung, Band 13, Heft 10, S. 965-969
ISSN: 0721-880X
In: Neue Zeitschrift für Verwaltungsrecht: NVwZ ; vereinigt mit Verwaltungsrechtsprechung, Band 21, Heft 12, S. 1489
ISSN: 0721-880X
In: Economica, Band 32, Heft 127, S. 350
In: New Light on Galaxy Evolution, S. 209-216
The hosts of long duration gamma-ray bursts (GRBs) are predominantly starburst galaxies at subsolar metallicity. At redshifts z < 1, this implies that most of them are low-mass galaxies similar to the populations of blue compact dwarfs and dwarf irregulars. What triggers the massive star-formation needed for producing a GRB progenitor is still largely unknown, as are the resolved gas properties and kinematics of these galaxies and their formation history. Here we present a sample of six spatially resolved GRB hosts at z < 0.3 observed with 3D spectroscopy at high spectral resolution (R = 8000-13 000) using FLAMES/VLT. We analyzed the resolved gas kinematics of the full sample and the abundances in a subsample with strong enough emission lines. Only two galaxies show a regular disk-like rotation field, another two are dispersion-dominated, and the remaining ones have two narrow emission components associated with different parts of the galaxy but no regular rotation field, which might indicate a recent merger. All galaxies show evidence for broad components underlying the main emission peak with σ of 50-110 km s-1. This broad component is more metal-rich than the narrow components, it is blueshifted in most cases, and it follows a different velocity structure. We find a weak correlation between the star-formation rate and the width of the broad component, its flux compared to the narrow component, and the maximum outflow velocity of the gas, but we do not find any correlation with the star-formation density, metallicity or stellar mass. We hence associate this broad component with a metal-rich outflow from star-forming regions in the host. The GRB is not located in the brightest region of the host, but is always associated with some star-forming region showing a clear wind component. Our study shows the great potential of 3D spectroscopy to study the star-formation processes and history in galaxies hosting extreme transients, the need for high signal-To-noise, and the perils using unresolved or only partially resolved data for these kinds of studies. © ESO 2021. ; CT and AdUP acknowledge support from AYA2017-89384-P, CT and AdUP also from a Ramón y Cajal fellowships RyC-2012-09984 and RyC-2012-09975, LI from a Juan de la Cierva Integración fellowship IJCI-2016-30940. DAK acknowledges support from the Spanish National Research Project RTI2018-098104-J-I00 (GRBPhot). JFAF acknowledges support from the Spanish Ministerio de Ciencia, Innovación y Universidades through the grant PRE2018-086507. SDV acknowledges support from the French National Research Agency (ANR) under contract ANR-16-CE31-0003. LC is supported by YDUN grant DFF 4090-00079. Ground based observations were collected at the VLT under program 092.D-0389(A). ; With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709. ; Peer reviewed
BASE
We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB160804A at z=0.737. Typically, GRBs are found in lowmass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/M) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gasphase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as MgII and MgI. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.© 2018 The Author(s). ; We would like to thank the anonymous referee for a constructive report provided in a timely manner. KEH and PJ acknowledge support by a Project Grant (162948-051) from The Icelandic Research Fund. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement no. EGGS-278202. AUP, CCT and ZC acknowledge support from the Spanish Ministry of Economy and Competitivity under grant number AYA 2014-58381-P. AUP and CCT acknowledge support from Ramon y Cajal fellowships (RyC-2012-09975 and RyC-2012-09984). AUP acknowledges support from a grant from the BBVA foundation for researchers and cultural creators. ZC acknowledges support from the Juan de la Cierva Incorporacion fellowship IJCI-2014-21669 and from the Spanish research project AYA 2014-58381-P. This research was based on observations carried out under the programme ID 097.A-0036 (PI: J. Fynbo) with the X-shooter spectrograph mounted at the Cassegrain Very Large Telescope (VLT), Unit 2 - Kueyen, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile; and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias under program A32TAC_5 (PI: D'Elia).
BASE
In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31/03/2017. In total, we have obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimise biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneously selected sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We have constrained the fraction of dark bursts to be <28 per cent and confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we have provided a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by ∼33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening Universe.© ESO 2019. ; JPUF, BMJ and DX acknowledge support from the ERC-StG grant EGGS-278202. The Dark Cosmology Centre was funded by the Danish National Research Foundation. This work was supported by a VILLUM FONDEN Investigator grant to JH (project number 16599). TK acknowledges support by the European Commission under the Marie Curie Intra-European Fellowship Programme in FP7. LK and JJ acknowledges support from NOVA and NWO-FAPESP grant for advanced instrumentation in astronomy. KEH and PJ acknowledge support by a Project Grant (162948-051) from The Icelandic Research Fund. AG acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0031 and project grant No. J1-8136). CT acknowledges support from a Spanish National Research Grant of Excellence under project AYA 2014-58381-P and funding associated to a Ramon y Cajal fellowship under grant number RyC-2012-09984. AdUP acknowledges support from a Ramon y Cajal fellowship, a BBVA Foundation Grant for Researchers and Cultural Creators, and the Spanish Ministry of Economy and Competitiveness through project AYA2014-58381-P. ZC acknowledges support from the Spanish research project AYA 2014-58381-P and support from Juan de la Cierva Incorporacion fellowships IJCI-2014-21669. DAK acknowledges support from the Spanish research project AYA 2014-58381-P and support from Juan de la Cierva Incorporacion fellowships IJCI-2015-26153. RSR acknowledges AdUP's BBVA Foundation Grant for Researchers and Cultural Creators and support from ASI (Italian Space Agency) through the Contract n. 2015-046-R.0 and from European Union Horizon 2020 Programme under the AHEAD project (grant agreement n. 654215). GL is supported by a research grant (19054) from VILLUM FONDEN. SDV acknowledges the support of the French National Research Agency (ANR) under contract ANR-16-CE31-0003 BEaPro DM acknowledges support from the Instrument Center for Danish Astrophysics (IDA). ; Peer Reviewed
BASE