S2P3-R v2.0: computationally efficient modelling of shelf seas on regional to global scales
This is the final version. Available on open access from the European Geosciences Union via the DOI in this record ; Code availability: S2P3Rv2.0 is available on GitHub: https://github.com/PaulHalloran/S2P3Rv2.0 (last access: 21 September 2021). The release associated with this paper (https://github.com/PaulHalloran/S2P3Rv2.0/releases/tag/v1.0.1, last access: 21 September 2021) has been archived on Zenodo with the following DOI: https://doi.org/10.5281/zenodo.4147559 (Halloran, 2020a). The readme file available on GitHub or via the DOI link provides step-by-step instructions for how to install, set up and run the model, and it provides a basic script for analysing the model output. At the bottom of the readme, a worked example is provided to help the user go through the full process from generating model forcing files, running the model and displaying the output with some example data. ; Data availability: The model minus satellite SST data from the global (65∘ S–65∘ N) simulation averaged between 2006 and 2016, from which the global validation has been undertaken in this paper, is archived as NetCDF and csv files to allow potential users to undertake bespoke assessment of the model http://doi.org/10.5281/zenodo.4018815 (Halloran, 2020b). ; The marine impacts of climate change on our societies will be largely felt through coastal waters and shelf seas. These impacts involve sectors as diverse as tourism, fisheries and energy production. Projections of future marine climate change come from global models. Modelling at the global scale is required to capture the feedbacks and large-scale transport of physical properties such as heat, which occur within the climate system, but global models currently cannot provide detail in the shelf seas. Version 2 of the regional implementation of the Shelf Sea Physics and Primary Production (S2P3-R v2.0) model bridges the gap between global projections and local shelf-sea impacts. S2P3-R v2.0 is a highly simplified coastal shelf model, computationally efficient enough to be run across the shelf seas of the whole globe. Despite the simplified nature of the model, it can display regional skill comparable to state-of-the-art models, and at the scale of the global (excluding high latitudes) shelf seas it can explain >50 % of the interannual sea surface temperature (SST) variability in ∼60 % of grid cells and >80 % of interannual variability in ∼20 % of grid cells. The model can be run at any resolution for which the input data can be supplied, without expert technical knowledge, and using a modest off-the-shelf computer. The accessibility of S2P3-R v2.0 places it within reach of an array of coastal managers and policy makers, allowing it to be run routinely once set up and evaluated for a region under expert guidance. The computational efficiency and relative scientific simplicity of the tool make it ideally suited to educational applications. S2P3-R v2.0 is set up to be driven directly with output from reanalysis products or daily atmospheric output from climate models such as those which contribute to the sixth phase of the Climate Model Intercomparison Project, making it a valuable tool for semi-dynamical downscaling of climate projections. The updates introduced into version 2.0 of this model are primarily focused around the ability to geographical relocate the model, model usability and speed but also scientific improvements. The value of this model comes from its computational efficiency, which necessitates simplicity. This simplicity leads to several limitations, which are discussed in the context of evaluation at regional and global scales. ; Natural Environment Research Council (NERC) ; European Union Horizon 2020 ; NOAA