AbstractPlastics are nowadays considered to be the workhorse material of our modern society with an ubiquitous presence that has increased manifold over the past 60 years, providing several benefits to the global economy. However, inappropriate and/or uncontrolled disposal practices, poor waste management infrastructure and application of insufficient recycling technologies, coupled with a lack of public awareness and incentives, have rendered plastic waste omnipresent, littering both the marine and the terrestrial environment with multi-faceted impacts. This short communication/commentary aims at delineating the plastic litter global challenge providing, at the same time, scientific views and perspectives on properly dealing with this material type, both upstream and downstream.
AbstractCircular economy (CE) is extensively discussed around the globe. Presently, discussions are mostly concerned with the importance of achieving CE and the benefits associated therewith, with the various barriers surrounding its implementation being less debated. Understanding the context in which circularity can flourish is a prerequisite in building the capabilities to deal with the multi-faceted challenges that currently hamper progress in closing the material, component and product loops. In this study, we discuss the importance of systems thinking in understanding the way resource recovery systems operate, and in promoting deep transformational change. We suggest that transformational change needs to go beyond closing materials, components and products (MCPs) loops, and promote sustainability in the way resources are exploited, used and managed throughout the system. By adopting a system of systems approach, we postulate that there are five interconnected sub-systems that need to be considered for supporting transitions to CE, namely, resource flows and provisioning service; governance, regulatory framework and political landscape; business activities and the marker; infrastructure and innovation; and user practices. This holistic approach provides a useful means to cutting through systemic complexity, and focuses on the dynamics between processes, values and actors in the value chain, and their dependence on cultural, spatial and temporal characteristics. We conclude that a systems-based approach can build up the capabilities required to identify and understand persistent linear trends and, in turn, support forward-thinking and time investment in enabling sustainable transitions. This, in turn, can help to align priorities and transform our current practices, speeding up the process of closing the MCP loops in a sustainable manner.
Circular economy (CE) is extensively discussed around the globe. Presently, discussions are mostly concerned with the importance of achieving CE and the benefits associated therewith, with the various barriers surrounding its implementation being less debated. Understanding the context in which circularity can flourish is a prerequisite in building the capabilities to deal with the multi-faceted challenges that currently hamper progress in closing the material, component and product loops. In this study, we discuss the importance of systems thinking in understanding the way resource recovery systems operate, and in promoting deep transformational change. We suggest that transformational change needs to go beyond closing materials, components and products (MCPs) loops, and promote sustainability in the way resources are exploited, used and managed throughout the system. By adopting a system of systems approach, we postulate that there are five interconnected sub-systems that need to be considered for supporting transitions to CE, namely, resource flows and provisioning service; governance, regulatory framework and political landscape; business activities and the marker; infrastructure and innovation; and user practices. This holistic approach provides a useful means to cutting through systemic complexity, and focuses on the dynamics between processes, values and actors in the value chain, and their dependence on cultural, spatial and temporal characteristics. We conclude that a systems-based approach can build up the capabilities required to identify and understand persistent linear trends and, in turn, support forward-thinking and time investment in enabling sustainable transitions. This, in turn, can help to align priorities and transform our current practices, speeding up the process of closing the MCP loops in a sustainable manner. [Figure: see text]
Around 6 million tonnes of edible food are being wasted (post-farm gate) in the UK each year. This fraction of edible wasted food is known as avoidable food waste. In a circular economy food is a valuable resource that must be captured at all stages of the food supply chain and, where possible, redistributed for consumption. This can prevent avoidable food waste generation, and dissipation of food's multidimensional value that spans environmental, economic, social, technical and political/organisational impacts. While the importance and benefits of surplus food redistribution have been well documented in the global literature, there are still barriers that prevent perfectly edible food from being wasted. This study looks at the main stages of the food supply chain, and amasses the opportunities, challenges and trade-offs associated with surplus food redistribution to the UK economy. It highlights points in the food system where interventions can be made, to improve food's circularity and sustainability potential. Stakeholder interrelations, regulatory and socio-economic aspects are discussed in relation to their influence on decreasing avoidable food waste. The main output from this work is a diagrammatic depiction of where challenges and trade-offs occur along the food supply chain, and how policy and socio-economic reforms are needed to maximise avoidable food waste prevention, and the surplus avoidable food redistribution in the food supply chain for social benefit.
AbstractLandfilling is one of the most common waste management methods employed in all countries alike, irrespective of their developmental status. The most commonly used types of landfills are (a) municipal solid waste landfill, (b) industrial waste landfill, and (c) hazardous waste landfill. There is, also, an emerging landfill type called "green waste landfill" that is, occasionally, being used. Most landfills, including those discussed in this review article, are controlled and engineered establishments, wherein the waste ought to abide with certain regulations regarding their quality and quantity. However, illegal and uncontrolled "landfills" (mostly known as open dumpsites) are, unfortunately, prevalent in many developing countries. Due to the widespread use of landfilling, even as of today, it is imperative to examine any environmental- and/or health-related issues that have emerged. The present study seeks to determine the environmental pollution and health effects associated with waste landfilling by adopting a desk review design. It is revealed that landfilling is associated with various environmental pollution problems, namely, (a) underground water pollution due to the leaching of organic, inorganic, and various other substances of concern (SoC) contained in the waste, (b) air pollution due to suspension of particles, (c) odor pollution from the deposition of municipal solid waste (MSW), and (d) even marine pollution from any potential run-offs. Furthermore, health impacts may occur through the pollution of the underground water and the emissions of gases, leading to carcinogenic and non-carcinogenic effects of the exposed population living in their vicinity. Graphical abstract