Research on the ecosystems has emerged in recent decades as a vital, successful, and sometimes controversial approach to environmental science. Ecosystem science has addressed issues such as human alteration of biogeochemical cycles, ecological complexity and biodiversity, and ecological response to climate change. As a central and integrating science, ecosystem-level studies have been highly successful. This book emphasizes the idea that much of the progress in ecosystem research has been driven by the emergence of new environmental problems that could not be addressed by existing approaches. By focusing on successes, limitations, and frontiers in ecosystem studies, it will be welcomed by students and scientists throughout the ecological and environmental communities
Integrated regional models are conceptual and mathematical models that describe the physical environment, biological interactions, human decision-making, and human impact on the environment. Efforts are now being made to integrate regional models from the physical, biological and social sciences in order to respond to diverse environmental problems. This volume explores the latest research developments on processes operating at a variety of scales, including regions, and how scientists can combine their efforts to develop models linking biological, physical, and human systems. Data requirements for successful integrated regional models are identified and discussed. Chapters also consider methodological questions, such as whether to integrate disciplinary approaches at the beginning or the end of the modelling process, and whether integrated regional models should focus on specific regions or specific problems. The information in this volume will enable the reader to view problems such as coastal zone management, atmospheric pollution, non-point source pollution, commodity production in forested areas, and urban expansion in a broad, conceptual context. Researchers and graduate students in ecology, biology, geography and geology will benefit from this innovative approach to contemporary environmental problems
AbstractA 'state factor' model of ecosystems can serve as a conceptual framework for researching and managing urban ecosystems. This approach provides alternative goals and narratives to those derived from historically grounded dichotomies between nature and culture, which can reify constructions of human influence as inherently destructive. The integration of human behaviour and state factors is critical to the application of a state factor model to urban ecosystems. We emphasize the role of culture in co-producing urban ecosystems and the importance of feedbacks between urban ecosystems and state factors. We advocate for ecosystem models that encourage local agency and actions that enhance the capacity of cities to constructively adapt to environmental change. We contrast this approach to efforts intended to minimize human impacts on ecosystems. The usefulness of the state factor model for informing such efforts is assessed through a consideration of the norms and practices of urban forest restoration in New York City. Despite the limitations and challenges of applying a state factor model to urban ecosystems, it can inform comparative research within and between cities and offers an intuitive framework for understanding the ecological conditions created in cities by human behaviour.
Infrastructure crises are not only technical problems for engineers to solve—they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum—or 'eco-techno spectrum'—as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis 'fixes.' Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize—and better plan for—gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms.
Infrastructure crises are not only technical problems for engineers to solve—they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum—or 'eco-techno spectrum'—as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis 'fixes.' Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize—and better plan for—gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms.
Infrastructure crises are not only technical problems for engineers to solve - they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum - or 'eco-techno spectrum' - as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis 'fixes.' Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize - and better plan for - gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms.
Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible take-up of solutions offered by biogeochemistry will need further integration of disciplines. Here, we emphasize how further developing ties between biology, geology, and chemistry and social sciences will advance biogeochemistry through: 1) better integration of mechanisms including contemporary evolutionary adaptation to predict changing biogeochemical cycles; 2) better integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems across temporal and spatial scales, including the continental and global scale, for use in modeling efforts; and 3) implementing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges of 21 st century biogeochemists are formidable, and will require both the capacity to respond fast to pressing issues and intense collaboration with government officials, the public, and internationally-funded programs. Keys to its success will be the degree to which biogeochemistry succeeds in making biogeochemical knowledge more available to policy makers and educators, in predicting future changes in the biosphere in response to climate change and other anthropogenic impacts on time scales from seasons to centuries, and in facilitating sustainable and equitable responses by society.
Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
In: Bianchi , T S , Anand , M , Bauch , C T , Canfield , D E , De Meester , L , Fennel , K , Groffman , P M , Pace , M L , Saito , M & Simpson , M J 2021 , ' Ideas and perspectives : Biogeochemistry - Some key foci for the future ' , Biogeosciences , vol. 18 , no. 10 , pp. 3005-3013 . https://doi.org/10.5194/bg-18-3005-2021
Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.