Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication.
Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure fromNpollution is decreasing in some areas. In Europe (EU28), overall emissions ofNOx declined by more than 50% whileNH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislatedNdeposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition.Weuse indicators ofNdeposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease inNdeposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases inNdeposition under CLE will most likely be insufficient to allow recovery from eutrophication.
Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication. ; publishedVersion
Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication.
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa. ; Y We are grateful to the ILTER network and the eLTER PLUS project (Grand Agreement No. 871128) for financial support. We acknowledge the E-OBS dataset from the EUFP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).The evaluation of forest plant diversity was based on data collected by partners of the official UNECE ICP Forests Network (http://icp-forests.net/contributors); part of the data were co-financed by the European Commission, project LIFE 07 ENV/D/000218 "Further Development and Implementation of an EU-level Forest monitoring Systeme (FutMon)". Data on wintering water birds in Bulgaria were provided by the national Executive Environment Agency with the Ministry of Environment and Waters. Data from the Finnish moth monitoring scheme were supported by the Finnish Ministry of the Environment. Data from the Swedish ICP Integrated Monitoring sites were financed by the Swedish Environmental Protection Agency. Data collection at Esthwaite Water and a subset of UK ECN sites was supported by Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability. Sponsorship of other UK ECN sites contributing data was provided by Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Department of Environment Food and Rural Affairs, Natural Resources Wales, Defense Science Technology Laboratory, Environment Agency, Forestry Commission, Forest Research, the James Hutton Institute (The Rural & Environment Science & Analytical Services Division of the Scottish Government), Natural England, Rothamsted Research, Scottish Government, Scottish Natural Heritage and the Welsh Government. Data from the Mondego estuary (Portugal) were supported by the Centre for Functional Ecology Strategic Project (UID/BIA/04004/2019) within the PT2020 Partnership Agreement and COMPETE 2020, and by FEDER through the project ReNATURE (Centro 2020, Centro-01-765-0145-FEDER-000007). We would like to thank Limburgse Koepel voor Natuurstudie (LiKoNa) for the data related to the National Park Hoge Kempen (BE). We would like to acknowledge the support for the long-term monitoring program MONEOS in the Scheldt estuary (BE) by `De Vlaamse Waterweg' and `Maritieme Toegang' (Flemish government). We are grateful to the board of the National Park "De Hoge Veluwe" for the permission to conduct our research on their property. We thank Ian J. Winfield and Terje Bongard for contributing data for the sites: Bassenthwaite Lake, Derwent Water (UK) and Atna River (Norway, freshwater invertebrate time series). Open access funding provided by Umea University. ; Pilotto, F; Haase, P (corresponding author), Senckenberg Res Inst, Gelnhausen, Germany; Nat Hist Museum, Gelnhausen, Germany; Univ Duisburg Essen, Essen, Germany. francesca.pilotto@umu.se; francesca.pilotto@umu.se
Este artículo contiene 11 páginas, 2 tablas, 4 figuras. ; Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. ; We are grateful to the ILTER network and the eLTER PLUS project (Grand Agreement No. 871128) for financial support. We acknowledge the E-OBS dataset from the EUFP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). The evaluation of forest plant diversity was based on data collected by partners of the official UNECE ICP Forests Network (http://icp-forests.net/contributors); part of the data were co-financed by the European Commission, project LIFE 07 ENV/D/000218 "Further Development and Implementation of an EU-level Forest monitoring Systeme (FutMon)". Data on wintering water birds in Bulgaria were provided by the national Executive Environment Agency with the Ministry of Environment and Waters. Data from the Finnish moth monitoring scheme were supported by the Finnish Ministry of the Environment. Data from the Swedish ICP Integrated Monitoring sites were financed by the Swedish Environmental Protection Agency. Data collection at Esthwaite Water and a subset of UK ECN sites was supported by Natural Environment Research Council award number NE/ R016429/1 as part of the UK-SCaPE programme delivering National Capability. Sponsorship of other UK ECN sites contributing data was provided by Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Department of Environment Food and Rural Affairs, Natural Resources Wales, Defense Science Technology Laboratory, Environment Agency, Forestry Commission, Forest Research, the James Hutton Institute (The Rural & Environment Science & Analytical Services Division of the Scottish Government), Natural England, Rothamsted Research, Scottish Government, Scottish Natural Heritage and the Welsh Government. Data from the Mondego estuary (Portugal) were supported by the Centre for Functional Ecology Strategic Project (UID/BIA/04004/2019) within the PT2020 Partnership Agreement and COMPETE 2020, and by FEDER through the project ReNATURE (Centro 2020, Centro-01-765-0145-FEDER-000007). We would like to thank Limburgse Koepel voor Natuurstudie (LiKoNa) for the data related to the National Park Hoge Kempen (BE). We would like to acknowledge the support for the long-term monitoring program MONEOS in the Scheldt estuary (BE) by 'De Vlaamse Waterweg' and 'Maritieme Toegang' (Flemish government). We are grateful to the board of the National Park "De Hoge Veluwe" for the permission to conduct our research on their property. We thank Ian J. Winfield and Terje Bongard for contributing data for the sites: Bassenthwaite Lake, Derwent Water (UK) and Atna River (Norway, freshwater invertebrate time series). Open access funding provided by Umeå University. ; Peer reviewed