Structural and bonding patterns arising from the incorporation of fluorine atoms in a graphene-like network relevant to the deposition of carbon fluoride (CF(x)) films were addressed by first-principles calculations. We find that large N-member (N = 8-12) rings, defects by sheet branching, and defects associated with bond rotation pertain to CF(x). The cohesive energy gains associated with these patterns are similar to 0.2-0.4 eV/at., which is similar to those for a wide range of defects in other C-based nanostructured solids. Fullerene-like CF(x) is predicted for F concentrations below similar to 10 at.%, while CF(x) compounds with higher F content are predominantly amorphous or polymeric. ; Funding Agencies|Swedish Governmental Agency for Innovation Systems (VINNOVA)||European Research Council (ERC)||
Ceramic coatings are an alternative to achieve or maintain a high wear resistance of metallic surfaces, and simultaneously allow for a reduction in metal ion release. Silicon nitride based (SiNx) coatings deposited by high power impulse magnetron sputtering (HiPIMS) have shown potential for use in joint implants seen from an improved chemical stability in combination with a good adhesion. The aim of this study was to investigate the effect of N, C, Cr and Nb content on the tribocorrosive performance of 3.7 to 8.8 µm thick SiNx coatings deposited by HiPIMS onto CoCrMo discs to improve the mechanical properties and/or chemical stability of SiNx . Coating composition was evaluated by X-ray photoelectron spectroscopy (XPS) and the surface roughness by Vertical Scanning Interferometry (VSI). Hardness and Young's modulus were investigated by nanoindentation and coating adhesion was measured by scratch tests. Multidirectional wear tests against UHMWPE pins were performed for 2 million cycles in bovine serum solution (25%) at 37°C, at an estimated contact pressure of 2.1 MPa. Coatings with a relatively low hardness tended to fail earlier in the wear test, due to chemical reactions and eventually dissolution, accelerated by the tribological contact. In fact, while no definite correlation could be observed between coating composition (N: 42.6-55.5 at%, C: 0-25.7 at%, Cr: 0 or 12.8 at%, and Nb: 0-24.5 at%) and wear performance, it was apparent that high-purity and/or -density coatings (i.e. low oxygen content and high nitrogen content) were desirable to prevent coating and/or counter surface wear. Coatings deposited with a higher energy fulfilled the target profile in terms of low surface roughness (Ra30N), chemical stability over time in the tribocorrosive environment, as well as low polymer wear, presenting potential for a future application in joint bearings. ; This research was funded by the European Union, grant number FP7-NMP-2012-310477 (Life Long Joints project); EBW+ Project Erasmus Mundus Programme, Action 2 – STRAND 1, Lot 9 (Latin America), Brazil, Grant number 2014-0982 and Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (Faculty Grant SFO Mat LiU No. 2009 00971).
Ceramic coatings deposited on orthopedic implants are an alternative to achieve and maintain high wear resistance of the metallic device, and simultaneously allow for a reduction in metal ion release. Silicon nitride based (SiNx) coatings deposited by high power impulse magnetron sputtering (HiPIMS) have shown potential for use in joint replacements, as a result of an improved chemical stability in combination with a good adhesion. This study investigated the effect of N, C, Cr, and Nb content on the tribocorrosive performance of 3.7 to 8.8 mu m thick SiNx coatings deposited by HiPIMS onto CoCrMo discs. The coating composition was assessed from X-ray photoelectron spectroscopy and the surface roughness by vertical scanning interferometry. Hardness and Youngs modulus were measured by nanoindentation and coating adhesion was investigated by scratch tests. Multidirectional wear tests against ultrahigh molecular weight polyethylene pins were performed for 2 million cycles in bovine serum solution (25%) at 37 degrees C, at an estimated contact pressure of 2.1 MPa. Coatings with a relatively low hardness tended to fail earlier in the wear test, due to chemical reactions and eventually dissolution, accelerated by the tribological contact. In fact, while no definite correlation could be observed between coating composition (N: 42.6-55.5 at %, C: 0-25.7 at %, Cr: 0 or 12.8 at %, and Nb: 0-24.5 at %) and wear performance, it was apparent that high-purity and/or -density coatings (i.e., low oxygen content and high nitrogen content) were desirable to prevent coating and/or counter surface wear or failure. Coatings deposited with a higher energy fulfilled the target profile in terms of low surface roughness (Ra 30 N), chemical stability over time in the tribocorrosive environment, as well as low polymer wear, presenting potential for a future application in joint bearings. ; Funding Agencies|European UnionEuropean Union (EU) [FP7-NMP-2012-310477]; EBW+ Project Erasmus Mundus Programme, Action 2-STRAND 1, Lot 9 (Latin America), Brazil [2014-0982]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University (Faculty Grant SFO Mat LiU) [2009 00971]
Reactive high power impulse magnetron sputtering (rHi-PIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N-2 as reactive gas. The effects of different N-2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N-2-to-Ar flow ratios of amp;lt;0.16, while signals from ionized molecules rise with the N-2-to-Ar flow ratio at the pulse end and during pulse off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the Nz-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS. ; Funding Agencies|European Union [GA-310477]; Carl Trygger Foundation for Scientific Research [CTS 14:431]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (SFO-Mat-LiU) [2009-00971]
A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CSxFy, synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CSxFy thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures (P-SF6). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CSxFy films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased P-SF6 leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F-2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CSxFy compounds. ; Funding Agencies|Swedish Foundation for Strategic Research (SSF) Synergy Grant on Functional Carbides and Advanced Surface Engineering (FUNCASE) [RMA11-0029]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]
We deposit CSx thin solid films by reactive direct current magnetron sputtering of a C target in an argon plasma, using carbon disulfide (CS2) as a precursor to film growth. We investigate the influence of the partial pressure of the CS2 vapor introduced into the plasma on the composition, the chemical bonding structure, the structural, and the mechanical properties as determined by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), and nanoindentation for films deposited at 150 and 300 degrees C. The Raman and the XPS results indicate that S atoms are incorporated in mostly sp(2) bonded C network. These results agree with previous ab-initio theoretical findings obtained by modeling of the CSx compound by the Synthetic Growth Concept. The microstructure of the films as well as the results of their Raman characterization and the nano mechanical testing results all point out that with the increasing S content some spa bonding is admixed in the predominantly sp(2) bonded CSx network, leading to typical amorphous structure with short and interlocked graphene-like planes for S contents between 2% and 8%. We conclude that CSx thin solid films deposited by using CS2 as a precursor would be CSx films deposited at low temperature of similar to 150 degrees C and with an S content in the region of 6 at.% may be interesting candidates for applications as hard/elastic protective coatings. ; Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; Swedish Research Council (VR) through FLAG-ERA JTC 2015 project GRIFONESwedish Research Council [VR 2015-06816, VR 2017-04071]; Aforsk grant [18-266]; VRSwedish Research Council [VR 2016-05362]; Knut and Alice Wallenberg (KAW) FoundationKnut & Alice Wallenberg Foundation [KAW 2015.0043]