Families with lower socioeconomic status are less likely to adopt household smoking bans (HSB). The aim of this study was to determine whether socioeconomic disparities in HSB prevalence in Italy decreased 7–9 years after the introduction of the Italian ban on smoking in public places. A longitudinal, 12-year, two-wave study was conducted on a sample of 3091 youths aged 6–14 years in 2002; 1763 (57%) were re-interviewed in 2012–2014. A Poisson regression with a robust error variance was used to assess the association between socioeconomic disparities and HSB prevalence. The adoption of HSBs significantly increased from 60% in 2002 to 75% in 2012–2014, with the increase recorded in youths with ≥1 smoking parent only (from 22% at baseline to 46% at follow-up). The presence of HSBs at baseline was more likely in families with ≥1 graduate parent compared to those with no graduate parents (prevalence ratio (PR) = 1.34, 95% confidence interval (CI) = 1.15–1.57), either in families with ≥1 smoking parent (PR = 1.36, 95% CI = 1.17–1.58) or in families with non-smoking parents (PR = 1.61, 95% CI = 1.01–2.56). Conversely, at follow-up socioeconomic disparities dropped since families with no graduate parents were 1.5-fold more likely to introduce a HSB between the two waves. The Italian ban on smoking in public places may have increased the adoption of smoke-free homes in families with smoking and non-graduate parents, causing the drop of the socioeconomic gap in smoke-free homes.
Introduction. In Italy, regional governments are in charge of implementing cervical, breast and colorectal cancer screening programmes. The 2020 Coronavirus pandemic led to a national lockdown and the temporary suspension of several non-urgent healthcare activities, including cancer screening. This paper aims to describe the results of a national survey carried out by the National Centre for Screening Monitoring (ONS) on cervical, breast and colorectal cancer screening activities in 2020.Materials and methods. A national survey was conducted by ONS in 2020 to assess: the number of screening invitations by Region; the volumes of screening tests and the attitude to attend the screening programme compared to 2019; the number of delayed diagnoses of malignant or pre-malignant lesions caused by the slowing down of screening programmes, based on the average Region-specific screening detection rate for cervical, breast and colorectal cancers.Results. Screening tests for breast, colorectal and cervical cancer decreased by 37.6%, 45.5% and 43.4% in 2020 compared with 2019. In 2020 the estimated numbers of undiagnosed lesions are: 3,324 breast cancers, 1,299 colorectal cancers, 7,474 colorectal advanced adenomas and 2,782 CIN2 or more severe cervical lesions. Participation in cancer screening programmes decreased by 15%, 15% and 20%, for cervical, breast and CRC screening, respectively.Discussion and conclusions. An urgent call to action is needed to prevent further delaysand to limit the impact of the pandemic on cancer diagnosis and prevention.
Smoke-free legislation reduced second-hand smoke (SHS) exposure in public places, and indirectly promoted private smoke-free settings. Nevertheless, a large proportion of adults is still exposed to SHS at home. The aim of this paper is to quantify the burden of disease due to home SHS exposure among adults in the 28-European Union (EU) countries for year 2017. The burdens by gender from lung cancer, chronic obstructive pulmonary disease (COPD), breast cancer, ischemic heart disease (IHD), stroke, asthma, and diabetes were estimated in an original research analysis using the comparative risk assessment method. Relative risks of death/diseases by gender for adults exposed to SHS at home compared to not exposed ones were estimated updating existing meta-analyses. Prevalence of home SHS exposure by gender was estimated using a multiple imputation procedure based on Eurobarometer surveys. Data on mortality and disability adjusted life years (DALYs) were obtained from the Global Burden of Disease, Injuries and Risk Factors Study. In 2017, 526,000 DALYs (0.36% of total DALYs) and 24,000 deaths (0.46% of total deaths) were attributable to home SHS exposure in the 28-EU countries, mainly from COPD and IHD. South-Eastern EU countries showed the highest burden, with proportion of DALYs/deaths attributable to SHS exposure on total higher than 0.50%/0.70%, whereas northern EU-countries showed the lowest burden, with proportions of DALYs/deaths lower than 0.25%/0.34%. The burden from SHS exposure is still significant in EU countries. More could be done to raise awareness of the health risks associated with SHS exposure at home. ; Additional co-authors: TackSHS Project Investigators
Smoking and second-hand smoke (SHS) exposure have been recently linked to a higher risk of breast cancer in women. The aim of this work is to estimate the number of deaths and disability-adjusted life years (DALYs) from breast cancer attributable to these two risk factors in the European Union (EU-28) in 2017. The comparative risk assessment method was used. Data on prevalence of smoking and SHS exposure were extracted from the Eurobarometer surveys, relative risks from a recent meta-analysis, and data on mortality and DALYs from breast cancer were estimated from the Global Burden of Disease, Injuries and Risk Factors Study. In 2017, 82 239 DALYs and 3354 deaths from breast cancer in the EU-28 could have been avoided by removing exposure to these two risk factors (smoking and SHS exposure). The proportion of DALYs from breast cancer lost respectively from smoking and SHS exposure was 2.6% and 1.0%, although geographically distributed with significant heterogeneity. These results represent the first estimates of breast cancer burden in women attributable to smoking and SHS exposure for the EU-28. It is important to increase awareness among women, health professionals and wider society of the association between smoking, SHS exposure and breast cancer, a relationship that is not widely recognised or discussed.
Background Secondhand smoke (SHS) exposure at home and fetal SHS exposure during pregnancy are a major cause of disease among children. The aim of this study is quantifying the burden of disease due to SHS exposure in children and in pregnancy in 2006–2017 for the 28 European Union (EU) countries. Methods Exposure to SHS was estimated using a multiple imputation procedure based on the Eurobarometer surveys, and SHS exposure burden was estimated with the comparative risk assessment method using meta-analytical relative risks. Data on deaths and disability-adjusted life years (DALYs) were collected from National statistics and from the Global Burden of Disease Study. Results Exposure to SHS and its attributable burden stalled in 2006–2017; in pregnant women, SHS exposure was 19.8% in 2006, 19.1% in 2010, and 21.0% in 2017; in children it was 10.1% in 2006, 9.6% in 2010, and 12.1% in 2017. In 2017, 35,633 DALYs among children were attributable to SHS exposure in the EU, mainly due to low birth weight. Conclusions Comprehensive smoking bans up to 2010 contributed to reduce SHS exposure and its burden in children immediately after their implementation; however, SHS exposure still occurs, and in 2017, its burden in children was still relevant.
Background: outdoor secondhand smoke (SHS) concentrations are usually lower than indoor concentrations, yet some studies have shown that outdoor SHS levels could be comparable to indoor levels under specific conditions. The main objectives of this study were to assess levels of SHS exposure in terraces and other outdoor areas of hospitality venues and to evaluate their potential displacement to adjacent indoor areas. Methods: nicotine and respirable particles (PM2.5) were measured in outdoor and indoor areas of hospitality venues of 8 European countries. Hospitality venues of the study included night bars, restaurants and bars. The fieldwork was carried out between March 2009 and March 2011. Results: we gathered 170 nicotine and 142 PM2.5 measurements during the study. The median indoor SHS concentration was significantly higher in venues where smoking was allowed (nicotine 3.69 µg/m3, PM2.5: 120.51 µg/m3) than in those where smoking was banned (nicotine: 0.48 µg/m3, PM2.5: 36.90 µg/m3). The median outdoor nicotine concentration was higher in places where indoor smoking was banned (1.56 µg/m3) than in venues where smoking was allowed (0.31 µg/m3). Among the different types of outdoor areas, the highest median outdoor SHS levels (nicotine: 4.23 µg/m3, PM2.5: 43.64 µg/m3) were found in the semi-closed outdoor areas of venues where indoor smoking was banned. Conclusions: banning indoor smoking seems to displace SHS exposure to adjacent outdoor areas. Furthermore, indoor settings where smoking is banned but which have a semi-closed outdoor area have higher levels of SHS than those with open outdoor areas, possibly indicating that SHS also drifts from outdoors to indoors. Current legislation restricting indoor SHS levels seems to be insufficient to protect hospitality workers - and patrons - from SHS exposure. Tobacco-free legislation should take these results into account and consider restrictions in the terraces of some hospitality venues to ensure effective protection.
In March 2020, when the Government imposed nation-wide lockdown measures to contrast the COVID-19 outbreak, the life of Italians suddenly changed. In order to evaluate the impact of lockdown on lifestyle habits and behavioral risk factors of the general adult population in Italy, we set up the Lost in Italy (LOckdown and lifeSTyles IN ITALY) project. Within this project, the online panel of Doxa was used to conduct a web-based cross-sectional study during the first phase of the lockdown, on a large representative sample of adults aged 18-74 years (N=6003). The self-administered questionnaire included information on lifestyle habits and perceived physical and mental health, through the use of validated scales. As we are working within the Lost in Italy project, we got two additional grants to further research on the medium-term impact of lockdown, a topic of great interest and with anticipated large socio-economic and public health implications. In details: we obtained by the AXA Research Fund support to evaluate the impact of COVID-19 lockdown on physical, mental, and social wellbeing of elderly and fragile populations in the Lombardy region, the area most heavily hit by the pandemic in the country. Moreover, as a fruitful integration, we obtained support by the Directorate General for Welfare of the region to assess health services delivery and access to healthcare in the same study population, combining an analysis of administrative databases with an economic analysis. We are confident that the solid background of our partners, the multi-disciplinary competencies they bring, together with appropriate funding and access to rich data sources will allow us to fulfill our research objectives. (www.actabiomedica.it)
Background: Population data on tobacco use and its determinants require continuous monitoring and careful inter-country comparison. We aimed to provide the most up-to-date estimates on tobacco smoking from a large cross-sectional survey, conducted in selected European countries. Methods: Within the TackSHS Project, a face-to-face survey on smoking was conducted in 2017–2018 in 12 countries: Bulgaria, England, France, Germany, Greece, Ireland, Italy, Latvia, Poland, Portugal, Romania, and Spain, representing around 80% of the 432 million European Union (EU) adult population. In each country, a representative sample of around 1,000 subjects aged 15 years and older was interviewed, for a total of 11,902 participants. Results: Overall, 25.9% of participants were current smokers (31.0% of men and 21.2% of women, P < 0.001), while 16.5% were former smokers. Smoking prevalence ranged from 18.9% in Italy to 37.0% in Bulgaria. It decreased with increasing age (compared to Conclusions: These smoking prevalence estimates represent the most up-to-date evidence in Europe. From them, it can be derived that there are more than 112 million current smokers in the EU-28. Lower socio-economic status is a major determinant of smoking habit in both sexes.
Background: Population data on tobacco use and its determinants require continuous monitoring and careful inter-country comparison. We aimed to provide the most up-to-date estimates on tobacco smoking from a large cross-sectional survey, conducted in selected European countries. Methods: Within the TackSHS Project, a face-to-face survey on smoking was conducted in 2017-2018 in 12 countries: Bulgaria, England, France, Germany, Greece, Ireland, Italy, Latvia, Poland, Portugal, Romania, and Spain, representing around 80% of the 432 million European Union (EU) adult population. In each country, a representative sample of around 1,000 subjects aged 15 years and older was interviewed, for a total of 11,902 participants. Results: Overall, 25.9% of participants were current smokers (31.0% of men and 21.2% of women, P < 0.001), while 16.5% were former smokers. Smoking prevalence ranged from 18.9% in Italy to 37.0% in Bulgaria. It decreased with increasing age (compared to <45, multivariable odds ratio [OR] for ≥65 year, 0.31; 95% confidence interval [CI], 0.27-0.36), level of education (OR for low vs high, 1.32; 95% CI, 1.17-1.48) and self-rated household economic level (OR for low vs high, 2.05; 95% CI, 1.74-2.42). The same patterns were found in both sexes. Conclusions: These smoking prevalence estimates represent the most up-to-date evidence in Europe. From them, it can be derived that there are more than 112 million current smokers in the EU-28. Lower socio-economic status is a major determinant of smoking habit in both sexes.
Through a comprehensive analysis of Italy's estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we aimed to understand the patterns of health loss and response of the health-care system, and offer evidence-based policy indications in light of the demographic transition and government health spending in the country.
Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.
Importance Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs). Conclusions and Relevance The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer
Publisher's version (útgefin grein) ; Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990-2010 time period, with the greatest annualised rate of decline occurring in the 0-9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10-24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10-24 years were also in the top ten in the 25-49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50-74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation; the University of Melbourne; Queensland Department of Health, Australia; the National Health and Medical Research Council, Australia; Public Health England; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; the Cardiovascular Medical Research and Education Fund; the National Institute on Ageing of the National Institutes of Health (award P30AG047845); and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated, the National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health and Social Care, or Public Health England; the United States Agency for International Development (USAID), the US Government, or MEASURE Evaluation; or the European Centre for Disease Prevention and Control (ECDC). This research used data from the Chile National Health Survey 2003, 2009-10, and 2016-17. The authors are grateful to the Ministry of Health, the survey copyright owner, for allowing them to have the database. All results of the study are those of the authors and in no way committed to the Ministry. The Costa Rican Longevity and Healthy Aging Study project is a longitudinal study by the University of Costa Rica's Centro Centroamericano de Poblacion and Instituto de Investigaciones en Salud, in collaboration with the University of California at Berkeley. The original pre-1945 cohort was funded by the Wellcome Trust (grant 072406), and the 1945-55 Retirement Cohort was funded by the US National Institute on Aging (grant R01AG031716). The principal investigators are Luis Rosero-Bixby and William H Dow and co-principal investigators are Xinia Fernandez and Gilbert Brenes. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. The Health Behaviour in School-Aged Children (HBSC) study is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997-98, 2001-02, 2005-06, and 2009-10 surveys was Candace Currie and the databank manager for the 1997-98 survey was Bente Wold, whereas for the following surveys Oddrun Samdal was the databank manager. A list of principal investigators in each country can be found on the HBSC website. Data used in this paper come from the 2009-10 Ghana Socioeconomic Panel Study Survey, which is a nationally representative survey of more than 5000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana and the Economic Growth Centre (EGC) at Yale University. It was funded by EGC. ISSER and the EGC are not responsible for the estimations reported by the analysts. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license number SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law, 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. Data for this research was provided by MEASURE Evaluation, funded by USAID. The authors thank the Russia Longitudinal Monitoring Survey, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology, Russia Academy of Sciences for making data available. This paper uses data from the Bhutan 2014 STEPS survey, implemented by the Ministry of Health with the support of WHO; the Kuwait 2006 and 2014 STEPS surveys, implemented by the Ministry of Health with the support of WHO; the Libya 2009 STEPS survey, implemented by the Secretariat of Health and Environment with the support of WHO; the Malawi 2009 STEPS survey, implemented by Ministry of Health with the support of WHO; and the Moldova 2013 STEPS survey, implemented by the Ministry of Health, the National Bureau of Statistics, and the National Center of Public Health with the support of WHO. This paper uses data from Survey of Health, Ageing and Retirement in Europe (SHARE) Waves 1 (DOI:10.6103/SHARE. w1.700), 2 (10.6103/SHARE.w2.700), 3 (10.6103/SHARE.w3.700), 4 (10.6103/SHARE.w4.700), 5 (10.6103/SHARE.w5.700), 6 (10.6103/SHARE.w6.700), and 7 (10.6103/SHARE.w7.700); see Borsch-Supan and colleagues (2013) for methodological details. The SHARE data collection has been funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N degrees 211909, SHARE-LEAP: GA N degrees 227822, SHARE M4: GA N degrees 261982) and Horizon 2020 (SHARE-DEV3: GA N degrees 676536, SERISS: GA N degrees 654221) and by DG Employment, Social Affairs & Inclusion. Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C), and from various national funding sources is gratefully acknowledged. This study has been realised using the data collected by the Swiss Household Panel, which is based at the Swiss Centre of Expertise in the Social Sciences. The project is financed by the Swiss National Science Foundation. The United States Aging, Demographics, and Memory Study is a supplement to the Health and Retirement Study (HRS), which is sponsored by the National Institute of Aging (grant number NIA U01AG009740). It was conducted jointly by Duke University and the University of Michigan. The HRS is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. This paper uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website. No direct support was received from grant P01-HD31921 for this analysis. The data reported here have been supplied by the United States Renal Data System. The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. Collection of data for the Mozambique National Survey on the Causes of Death 2007-08 was made possible by USAID under the terms of cooperative agreement GPO-A-00-08-000_D3-00. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study IVI conducted. L G Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Brazil; finance code 001) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, a Brazilian funding agency). I N Ackerman was supported by a Victorian Health and Medical Research Fellowship awarded by the Victorian Government. O O Adetokunboh acknowledges the South African Department of Science and Innovation and the National Research Foundation. A Agrawal acknowledges the Wellcome Trust DBT India Alliance Senior Fellowship. S M Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. M Ausloos, C Herteliu, and A Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. A Badawi is supported by the Public Health Agency of Canada. D A Bennett was supported by the NIHR Oxford Biomedical Research Centre. R Bourne acknowledges the Brien Holden Vision Institute, University of Heidelberg, Sightsavers, Fred Hollows Foundation, and Thea Foundation. G B Britton and I Moreno Velasquez were supported by the Sistema Nacional de Investigacion, SNI-SENACYT, Panama. R Buchbinder was supported by an Australian National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship. J J Carrero was supported by the Swedish Research Council (2019-01059). F Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. A R Chang was supported by National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grant K23 DK106515. V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundacao para a Ciencia e Tecnologia, IP, under the Norma Transitaria DL57/2016/CP1334/CT0006. A Douiri acknowledges support and funding from the National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care South London at King's College Hospital NHS Foundation Trust and the Royal College of Physicians, and support from the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. B B Duncan acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. H E Erskine is the recipient of an Australian NHMRC Early Career Fellowship grant (APP1137969). A J Ferrari was supported by a NHMRC Early Career Fellowship grant (APP1121516). H E Erskine and A J Ferrari are employed by and A M Mantilla-Herrera and D F Santomauro affiliated with the Queensland Centre for Mental Health Research, which receives core funding from the Queensland Department of Health. M L Ferreira holds an NHMRC Research Fellowship. C Flohr was supported by the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust. M Freitas acknowledges financial support from the EU (European Regional Development Fund [FEDER] funds through COMPETE POCI-01-0145-FEDER-029248) and National Funds (Fundacao para a Ciencia e Tecnologia) through project PTDC/NAN-MAT/29248/2017. A L S Guimaraes acknowledges support from CNPq. C Herteliu was partially supported by a grant co-funded by FEDER through Operational Competitiveness Program (project ID P_40_382). P Hoogar acknowledges Centre for Bio Cultural Studies, Directorate of Research, Manipal Academy of Higher Education and Centre for Holistic Development and Research, Kalaghatagi. F N Hugo acknowledges the Visiting Professorship, PRINT Program, CAPES Foundation, Brazil. B-F Hwang was supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. S M S Islam was funded by a National Heart Foundation Senior Research Fellowship and supported by Deakin University. R Q Ivers was supported by a research fellowship from the National Health and Medical Research Council of Australia. M Jakovljevic acknowledges the Serbian part of this GBD-related contribution was co-funded through Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. P Jeemon was supported by a Clinical and Public Health intermediate fellowship (grant number IA/CPHI/14/1/501497) from the Wellcome Trust-Department of Biotechnology, India Alliance (2015-20). O John is a recipient of UIPA scholarship from University of New South Wales, Sydney. S V Katikireddi acknowledges funding from a NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_12017/13, MC_UU_12017/15), and the Scottish Government Chief Scientist Office (SPHSU13, SPHSU15). C Kieling is a CNPq researcher and a UK Academy of Medical Sciences Newton Advanced Fellow. Y J Kim was supported by Research Management Office, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/00010). K Krishan is supported by UGC Centre of Advanced Study awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar was supported by K43 TW 010716 FIC/NIMH. B Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. J V Lazarus was supported by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III [ISCIII]/ESF, the EU [CP18/00074]). K J Looker thanks the NIHR Health Protection Research Unit in Evaluation of Interventions at the University of Bristol, in partnership with Public Health England, for research support. S Lorkowski was funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1808A). R A Lyons is supported by Health Data Research UK (HDR-9006), which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, NIHR (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation, and Wellcome Trust. J J McGrath is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the Queensland Health Department (via West Moreton HHS). P T N Memiah acknowledges support from CODESRIA. U O Mueller gratefully acknowledges funding by the German National Cohort Study BMBF grant number 01ER1801D. S Nomura acknowledges the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). A Ortiz was supported by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. S B Patten was supported by the Cuthbertson & Fischer Chair in Pediatric Mental Health at the University of Calgary. G C Patton was supported by an aNHMRC Senior Principal Research Fellowship. M R Phillips was supported in part by the National Natural Science Foundation of China (NSFC, number 81371502 and 81761128031). A Raggi, D Sattin, and S Schiavolin were supported by grants from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4-Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). P Rathi and B Unnikrishnan acknowledge Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal. A L P Ribeiro was supported by Brazilian National Research Council, CNPq, and the Minas Gerais State Research Agency, FAPEMIG. D C Ribeiro was supported by The Sir Charles Hercus Health Research Fellowship (#18/111) Health Research Council of New Zealand. D Ribeiro acknowledges financial support from the EU (FEDER funds through the Operational Competitiveness Program; POCI-01-0145-FEDER-029253). P S Sachdev acknowledges funding from the NHMRC of Australia Program Grant. A M Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. M M Santric-Milicevic acknowledges the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 175087). R Sarmiento-Suarez received institutional support from Applied and Environmental Sciences University (Bogota, Colombia) and ISCIII (Madrid, Spain). A E Schutte received support from the South African National Research Foundation SARChI Initiative (GUN 86895) and Medical Research Council. S T S Skou is currently funded by a grant from Region Zealand (Exercise First) and a grant from the European Research Council under the EU's Horizon 2020 research and innovation program (grant agreement number 801790). J B Soriano is funded by Centro de Investigacion en Red de Enfermedades Respiratorias, ISCIII. R Tabares-Seisdedos was supported in part by the national grant PI17/00719 from ISCIII-FEDER. N Taveira was partially supported by the European & Developing Countries Clinical Trials Partnership, the EU (LIFE project, reference RIA2016MC-1615). S Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral programme (reference number CD15/00019 from ISCIII-FEDER). S B Zaman received a scholarship from the Australian Government research training programme in support of his academic career. ; "Peer Reviewed"