Decoding the social world: data science and the unintended consequences of communication
In: Information policy series
30 Ergebnisse
Sortierung:
In: Information policy series
In: Journalism & mass communication quarterly: JMCQ, Band 97, Heft 4, S. 1178-1180
ISSN: 2161-430X
In: The journal of mathematical sociology, Band 44, Heft 4, S. 267-268
ISSN: 1545-5874
In: Policy & internet, Band 5, Heft 2, S. 147-160
ISSN: 1944-2866
AbstractDigital technologies keep track of everything we do and say while we are online, and we spend online an increasing portion of our time. Databases hidden behind web services and applications are constantly fed with information of our movements and communication patterns, and a significant dimension of our lives, quantified to unprecedented levels, gets stored in those vast online repositories. This article considers some of the implications of this torrent of data for social science research, and for the types of questions we can ask of the world we inhabit. The goal of the article is twofold: to explain why, in spite of all the data, theory still matters to build credible stories of what the data reveal; and to show how this allows social scientists to revisit old questions at the intersection of new technologies and disciplinary approaches. The article also considers how Big Data research can transform policymaking, with a focus on how it can help us improve communication and governance in policy‐relevant domains.
In: Forthcoming in Dutton, W.H. and Graham, M. (eds) Society and the Internet: How Information and Social Networks are Changing our Lives, Oxford: Oxford University Press
SSRN
SSRN
This paper has two basic aims: the first is to understand why networks matter in the creation and maintenance of social capital; the second is to explore many of the (unproved) assumptions that arise when social capital is applied to the field of political participation. A simulation- based experiment is used to achieve both aims. The paper starts by delimiting the scope of the theoretical problem. It then reviews the assumptions made in the literature about the role networks play for social capital, and integrates them with what is known about dynamic networks. The third section provides a brief introduction to the methodological nature of simulation. It justifies the appropriateness of this technique to tackle the questions posed by the existing theory. A description of the simulation model and its results follows. The first set of experiments explores the structural properties of different networks in respect of information diffusion. The second set analyses a principle of action that might be responsible for the formation of social capital networks. The implications that these results have for the theory are assessed in the conclusion. Their links to future research are also discussed. ; El objetivo de este artículo es doble: por un lado, entender por qué importan las redes en la creación y mantenimiento de capital social y, por otro, explorar muchas de las asunciones (no probadas) que surgen cuando el concepto de capital social se aplica al campo de la participación política. Ambos objetivos se llevan a cabo con la ayuda de un experimento de simulación. El artículo empieza exponiendo los términos del problema teórico. Prosigue con un resumen de las asunciones que aparecen en la literatura sobre el rol que las redes juegan en el funcionamiento del capital social y las contrasta con lo que se sabe acerca del funcionamiento de redes dinámicas. La tercera sección proporciona una breve introducción a la naturaleza metodológica de la simulación multi-agente. Le sigue una descripción del modelo de simulación y de sus resultados. El primer conjunto de experimentos explora las propiedades estructurales de distintas redes respecto a la difusión de información. El segundo conjunto analiza un principio de acción responsable de la formación de redes de capital social. Las implicaciones teóricas de estos resultados son valoradas en la conclusión. También se discuten futuras líneas de investigación.
BASE
In: Social issues and policy review: SIPR, Band 17, Heft 1, S. 155-180
ISSN: 1751-2409
AbstractWe evaluate the empirical evidence interrogating the question of whether social media erodes social cohesion. We look at how networks, information exchange, and norms operate on these platforms. We also evaluate the conditions under which social media can be conducive to forming social capital and encouraging prosocial behavior. We discuss the psychological mechanisms that operate at the individual level and assess whether social media can create the environment and incentives to sustain cooperation and constructive exchange. Our discussion of the literature centers on how attitudes, perceptions, and beliefs are formed during the type of online interactions encouraged by platforms, their design, and affordances. We consider the policy implications of existing research, focusing on how empirical studies may inform regulatory efforts and platform interventions.
In: Forthcoming in Social Networks and Social Resilience, edited by T.A.B.Snijders, E.Lazega & R.Wittek.
SSRN
In: Information, Communication & Society
SSRN
Working paper
In: The annals of the American Academy of Political and Social Science, Band 659, Heft 1, S. 95-107
ISSN: 1552-3349
This study offers a systematic comparison of automated content analysis tools. The ability of different lexicons to correctly identify affective tone (e.g., positive vs. negative) is assessed in different social media environments. Our comparisons examine the reliability and validity of publicly available, off-the-shelf classifiers. We use datasets from a range of online sources that vary in the diversity and formality of the language used, and we apply different classifiers to extract information about the affective tone in these datasets. We first measure agreement (reliability test) and then compare their classifications with the benchmark of human coding (validity test). Our analyses show that validity and reliability vary with the formality and diversity of the text; we also show that ready-to-use methods leave much space for improvement when analyzing domain-specific content and that a machine-learning approach offers more accurate predictions across communication domains.
In: The Annals of the American Academy of Political and Social Science, Forthcoming
SSRN
In: Forthcoming in Social Networks
SSRN
In: In: 'Handbook of Digital Politics', Stephen Coleman and Deen Freelon (eds.), Forthcoming
SSRN
In: Oxford Handbooks Ser.
Online communication technologies have opened up a new world of research questions about how people form relationships, organize into groups and communities, and navigate the boundaries between public and private life. This handbook brings together research from a variety of disciplines that examine these questions through the lens of new data. The result is a new theoretical framework that capitalizes on the constantly pulsating signals of networked communication, and offers an innovative approach to the study of human behavior and opinion formation.