Policy solutions to facilitate restoration in coastal marine environments
In: Marine policy, Band 134, S. 104789
ISSN: 0308-597X
5 Ergebnisse
Sortierung:
In: Marine policy, Band 134, S. 104789
ISSN: 0308-597X
Active restoration is becoming an increasingly important conservation intervention to counteract the degradation of marine coastal ecosystems. Understanding what has motivated the scientific community to research the restoration of marine coastal ecosystems and how restoration research projects are funded is essential if we want to scale-up restoration interventions to meaningful extents. Here, we systematically review and synthesize data to understand the motivations for research on the restoration of coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs. We base this analysis off a published database of marine restoration studies, originally designed to estimate the cost and feasibility of marine coastal restoration, derived from mostly scientific studies published in peer-reviewed and some gray literature. For the present study, the database was updated with fields aimed at assessing the motivations, outcomes, and funding sources for each project. We classify restoration motivations into five categories: biotic, experimental, idealistic, legislative, and pragmatic. Moreover, we evaluate the variables measured and outcomes reported by the researchers and evaluate whether projects adhered to the Society for Ecological Restoration's (SER) standards for the practice of ecological restoration. The most common motivation of the scientific community to study restoration in marine coastal ecosystems was experimental i.e., to seek experimental data to answer ecological research questions or improve restoration approach, as expected since mostly peer-reviewed literature was evaluated here. There were differences in motivations among the five coastal ecosystems. For instance, biodiversity enhancement was the most common case for a biotic motivation in mangrove restoration projects. The most common metrics evaluated were growth/productivity, survivorship, habitat function, physical attributes, and reproduction. For most ecosystems, ecological outcomes were frequently reported, with socio-economic implications of ...
BASE
Reef ecosystems all over the world are in decline and managers urgently need information that can assess management interventions and set national conservation targets. We assess the conservation status and risk of ecosystem collapse for the Oyster Reef Ecosystem of Southern and Eastern Australia, which comprises two community sub-types established by Saccostrea glomerata (Sydney rock oyster) and Ostrea angasi (Australian flat oyster), consistent with the IUCN Red List of Ecosystems risk assessment process. We established: (i) key aspects of the ecosystem including: ecological description, biological characteristics, condition and collapse thresholds, natural and threatening processes; (ii) previous and current extent of occurrence and current area of occupancy; and (iii) its likelihood of collapse within the next 50e100 years. The most severe risk rating occurred for Criterion A: Reduction in Extent (since 1750) and Criterion D: Disruption of biotic processes (since 1750), although assessment varied from Least Concern to Critically Endangered amongst the four criteria assessed. Our overall assessment ranks the risk of collapse for the ecosystem (including both community sub-types) as Critically Endangered with a high degree of confidence. Our results suggest the need for rapid intervention to protect remaining reefs and undertake restoration at suitable sites. Several restoration projects have already demonstrated this is feasible, and Australia is well equipped with government policies and regulatory mechanisms to support the future conservation and recovery of temperate oyster ecosystems.
BASE
Oyster reef ecosystems used to form significant components of many temperate and subtropical inshore coastal systems but have suffered declines globally, with a concurrent loss of services. The early timing of many of these changes makes it difficult to determine restoration targets which consider interdecadal timeframes, community values and shifted baselines. On the Australian continent, however, the transition from Indigenous (Aboriginal) to Westernized resource use and management occurred relatively recently, allowing us to map social-ecological changes in detail. In this study, we reconstruct the transformations in the Sydney rock oyster (Saccostrea glomerata) wild commercial industry of central and southeast Queensland, and by extension its reef ecosystems, as well as the changing societal and cultural values related to the presence and use of the rock oyster through time. By integrating data from the archaeological, anthropological and fisheries literature, government and media accounts, we explore these transformations over the last two centuries. Before the 1870s, there was a relative equilibrium. Aboriginal peoples featured as sole traders to Europeans, supplying oysters and becoming a substantial component of the industry's labour pool. Effectively, Australia's commercial oyster industry arose from Aboriginal-European trade. During this initial phase, there was still a relative abundance of wild oyster, with subtidal oyster reef structures present in regions where oysters are today absent or scarce. By contrast, these reefs declined by the late 19th century, despite production of oysters increasing due to continued large-scale oyster recruitment and the expansion of oyster cultivation in intertidal areas. Production peaked in 1891, with successive peaks observed in regions further north. During the 1890s, flood events coupled with land-use changes introduced large quantities of silt into the system, which likely facilitated an increase in oyster pests and diseases, ultimately decreasing the carrying ...
BASE
We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.
BASE