A policy-based life cycle impact assessment method for Thailand
In: Environmental science & policy, Band 94, S. 82-89
ISSN: 1462-9011
14 Ergebnisse
Sortierung:
In: Environmental science & policy, Band 94, S. 82-89
ISSN: 1462-9011
In: Journal of Industrial Ecology, Band 20, Heft 6, S. 1399-1411
SSRN
In: Materials & Design, Band 30, Heft 6, S. 2173-2180
In: Waste management: international journal of integrated waste management, science and technology, Band 29, Heft 2, S. 731-738
ISSN: 1879-2456
In: International journal of sustainable development & world ecology, Band 10, Heft 2, S. 149-155
ISSN: 1745-2627
In: Environmental science and pollution research: ESPR, Band 25, Heft 18, S. 17654-17664
ISSN: 1614-7499
In: Sustainable Production Consumption Systems, S. 97-122
SSRN
In: Journal of Industrial Ecology, Band 21, Heft 5, S. 1115-1127
SSRN
In: World, Band 4, Heft 4, S. 776-794
ISSN: 2673-4060
Climate change plays a vital role in the hydrology of any river basin, which may have multidimensional consequences. There is a need to conduct climate change impact assessment studies with updated models and scenarios. This study aimed to assess the impact of climate change on the streamflow and hydropower in Pakistan's Kunhar River basin. Three general circulation models (GCMs), under two Shared Socioeconomic Pathway scenarios (SSPs 2–45 and 5–85), the Soil and Water Assessment Tool, and the flow duration curve were used to project the change in climatic parameters, streamflow, and hydropower potential, respectively. The findings indicated that in the 2080s, the precipitation, maximum, and minimum temperatures are projected to increase by 10%, 2.0 °C, and 3.0 °C under the SSP 2–45 scenario and are projected to increase by 8%, 3.7 °C, and 4.4 °C under the SSP 5–85 scenario, respectively. The annual streamflow may increase by 15 to 11%, and the seasonal fluctuations are more likely to be dominant compared with the annual fluctuations. The hydropower potential will probably increase by 24 to 16% under the SSP 2–45 and 5–85 scenarios in the 2080s. However, seasonal changes in streamflow and hydropower may impact the hydropower plant operation in the basin. The Kunhar River's hydrology may change from snow-fed to a rainfall–runoff river.
In: Environmental science & policy, Band 13, Heft 4, S. 291-302
ISSN: 1462-9011
In: Towards Life Cycle Sustainability Management, S. 413-424
Palm oil is a cooking oil and food ingredient in widespread use in the global food system. However, as a highly saturated fat, palm oil consumption has been associated with negative effects on cardiovascular health, while large scale oil palm production has been linked to deforestation. We construct an innovative fully integrated Macroeconomic-Environmental-Demographic-health (MED-health) model to undertake integrated health, environmental, and economic analyses of palm oil consumption and oil palm production in Thailand over the coming 20 years (2016–2035). In order to put a health and fiscal food policy perspective on policy priorities of future palm oil consumption growth, we model the implications of a 54% product-specific sales tax to achieve a halving of future energy intakes from palm cooking oil consumption. Total patient incidence and premature mortality from myocardial infarction and stroke decline by 0.03–0.16% and rural-urban equity in health and welfare improves in most regions. However, contrary to accepted wisdom, reduced oil palm production would not be environmentally beneficial in the Thailand case, since, once established, oil palms have favourable carbon sequestration characteristics compared to alternative uses of Thai cropland. The increased sales tax also provokes mixed economic impacts: While real GDP increases in a second-best Thai tax policy environment, relative consumption-to-investment price changes may reduce household welfare over extended periods unless accompanied by non-distortionary government compensation payments. Overall, our holistic approach demonstrates that product-specific fiscal food policy taxes may involve important trade-offs between nutrition, health, the economy, and the environment.
BASE
Palm oil is a cooking oil and food ingredient in widespread use in the global food system. However, as a highly saturated fat, palm oil consumption has been associated with negative effects on cardiovascular health, while large scale oil palm production has been linked to deforestation. We construct an innovative fully integrated Macroeconomic-Environmental-Demographic-health (MED-health) model to undertake integrated health, environmental, and economic analyses of palm oil consumption and oil palm production in Thailand over the coming 20 years (2016-2035). In order to put a health and fiscal food policy perspective on policy priorities of future palm oil consumption growth, we model the implications of a 54% product-specific sales tax to achieve a halving of future energy intakes from palm cooking oil consumption. Total patient incidence and premature mortality from myocardial infarction and stroke decline by 0.03-0.16% and rural-urban equity in health and welfare improves in most regions. However, contrary to accepted wisdom, reduced oil palm production would not be environmentally beneficial in the Thailand case, since, once established, oil palms have favourable carbon sequestration characteristics compared to alternative uses of Thai cropland. The increased sales tax also provokes mixed economic impacts: While real GDP increases in a second-best Thai tax policy environment, relative consumption-to-investment price changes may reduce household welfare over extended periods unless accompanied by non-distortionary government compensation payments. Overall, our holistic approach demonstrates that product-specific fiscal food policy taxes may involve important trade-offs between nutrition, health, the economy, and the environment.
BASE