Abstract Wearable inertial sensors can be used to monitor mobility in real-world settings over extended periods. Although these technologies are widely used in human movement research, they have not yet been qualified by drug regulatory agencies for their use in regulatory drug trials. This is because the first generation of these sensors was unreliable when used on slow-walking subjects. However, intense research in this area is now offering a new generation of algorithms to quantify Digital Mobility Outcomes so accurate they may be considered as biomarkers in regulatory drug trials. This perspective paper summarises the work in the Mobilise-D consortium around the regulatory qualification of the use of wearable sensors to quantify real-world mobility performance in patients affected by Parkinson's Disease. The paper describes the qualification strategy and both the technical and clinical validation plans, which have recently received highly supportive qualification advice from the European Medicines Agency. The scope is to provide detailed guidance for the preparation of similar qualification submissions to broaden the use of real-world mobility assessment in regulatory drug trials. This work was supported by the Mobilise-D project that has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No. 820820. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the European Federation of Pharmaceutical Industries and Associations (EFPIA). Content in this publication reflects the authors' view and neither IMI nor the European Union, EFPIA, or any Associated Partners are responsible for any use that may be made of the information contained herein.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Download ; Purpose: To study changes in lung function among individuals with a risk of obstructive sleep apnoea (OSA), and if asthma affected this relationship. Methods: We used data from the European Community Respiratory Health Survey II and III, a multicentre general population study. Participants answered questionnaires and performed spirometry at baseline and 10-year follow-up (n = 4,329 attended both visits). Subjects with high risk for OSA were identified from the multivariable apnoea prediction (MAP) index, calculated from BMI, age, gender, and OSA symptoms at follow-up. Asthma was defined as having doctor's diagnosed asthma at follow-up. Primary outcomes were changes in forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from baseline to follow-up. Results: Among 5108 participants at follow-up, 991 (19%) had a high risk of OSA based on the MAP index. Participants with high OSA risk more often had wheeze, cough, chest tightness, and breathlessness at follow-up than those with low OSA risk. Lung function declined more rapidly in subjects with high OSA risk (low vs high OSA risk [mean ± SD]: FEV1 = - 41.3 ± 24.3 ml/year vs - 50.8 ± 30.1 ml/year; FVC = - 30.5 ± 31.2 ml/year vs - 45.2 ± 36.3 ml/year). Lung function decline was primarily associated with higher BMI and OSA symptoms. OSA symptoms had a stronger association with lung function decline among asthmatics, compared to non-asthmatics. Conclusion: In the general population, a high probability of obstructive sleep apnoea was related to faster lung function decline in the previous decade. This was driven by a higher BMI and more OSA symptoms among these subjects. The association between OSA symptoms and lung function decline was stronger among asthmatics. Keywords: Asthma; Lung function; Lung function decline; Sleep apnoea. ; Uppsala University European Union (EU)
Publisher's version (útgefin grein) ; Objectives To compare the prevalence of different insomnia subtypes among middle-Aged adults from Europe and Australia and to explore the cross-sectional relationship between insomnia subtypes, respiratory symptoms and lung function. Design Cross-sectional population-based, multicentre cohort study. Setting 23 centres in 10 European countries and Australia. Methods We included 5800 participants in the third follow-up of the European Community Respiratory Health Survey III (ECRHS III) who answered three questions on insomnia symptoms: difficulties falling asleep (initial insomnia), waking up often during the night (middle insomnia) and waking up early in the morning and not being able to fall back asleep (late insomnia). They also answered questions on smoking, general health and chronic diseases and had the following lung function measurements: forced expiratory volume in 1 s (FEV 1), forced vital capacity (FVC) and the FEV 1 /FVC ratio. Changes in lung function since ECRHS I about 20 years earlier were also analysed. Main outcome measures Prevalence of insomnia subtypes and relationship to respiratory symptoms and function. Results Overall, middle insomnia (31.2%) was the most common subtype followed by late insomnia (14.2%) and initial insomnia (11.2%). The highest reported prevalence of middle insomnia was found in Iceland (37.2%) and the lowest in Australia (22.7%), while the prevalence of initial and late insomnia was highest in Spain (16.0% and 19.7%, respectively) and lowest in Denmark (4.6% and 9.2%, respectively). All subtypes of insomnia were associated with significantly higher reported prevalence of respiratory symptoms. Only isolated initial insomnia was associated with lower FEV 1, whereas no association was found between insomnia and low FEV 1 /FVC ratio or decline in lung function. Conclusion There is considerable geographical variation in the prevalence of insomnia symptoms. Middle insomnia is most common especially in Iceland. Initial and late insomnia are most common in Spain. All insomnia subtypes are associated with respiratory symptoms, and initial insomnia is also associated with lower FEV 1. ; Financial support for ECRHS III: Australia: National Health & Medical Research Council. Belgium: Antwerp South, Antwerp City: Research Foundation Flanders (FWO), grant code G.0.410.08.N.10 (both sites). Estonia: Tartu- SF0180060s09 from the Estonian Ministry of Education. France: (all) Ministère de la Santé. Programme Hospitalier de Recherche Clinique (PHRC) national 2010. Bordeaux: INSERM U897 Université Bordeaux segalen; Grenoble: Comite Scientifique AGIRadom 2011; Paris: Agence Nationale de la Santé, Région Ile de France, domaine d'intérêt majeur (DIM). Germany: Erfurt: German Research Foundation HE 3294/10–1; Hamburg: German Research Foundation MA 711/6–1, NO 262/7–1. Iceland: Reykjavik: The Landspitali University Hospital Research Fund, University of Iceland Research Fund, ResMed Foundation, California, USA, Orkuveita Reykjavikur (Geothermal plant), Vegagerðin (The Icelandic Road Administration (ICERA). The Icelandic Research found - grant no 1 73 701–052. Italy: all Italian centres were funded by the Italian Ministry of Health, Chiesi Farmaceutici SpA, in addition Verona was funded by Cariverona foundation, Education Ministry (MIUR). Norway: Norwegian Research council grant no 214123, Western Norway Regional Health Authorities grant no 911631, Bergen Medical Research Foundation. Spain: Fondo de Investigación Sanitaria (PS09/02457, PS09/00716 09/01511) PS09/02185 PS09/03190), Servicio Andaluz de Salud, Sociedad Española de Neumología y Cirurgía Torácica (SEPAR 1001/2010). Sweden: all centres were funded by The Swedish Heart and Lung Foundation, The Swedish Asthma and Allergy Association, The Swedish Association against Lung and Heart Disease. Fondo de Investigación Sanitaria (PS09/02457); Barcelona: Fondo de Investigación Sanitaria (FIS PS09/00716); Galdakao: Fondo de Investigación Sanitaria (FIS 09/01511); Huelva: Fondo de Investigación Sanitaria (FIS PS09/02185); and Servicio Andaluz de Salud Oviedo: Fondo de Investigación Sanitaria (FIS PS09/03190). Sweden: all centres were funded by The Swedish Heart and Lung Foundation, The Swedish Asthma and Allergy Association, The Swedish Association against Lung and Heart Disease. Swedish Research Council for health, working life and welfare (FORTE); Göteborg also received further funding from the Swedish Council for Working life and Social Research. Umea also received funding from Vasterbotten Country Council ALF grant. Switzerland: The Swiss National Science Foundation (grants no 33CSCO-134276/1, 33CSCO-108796, 3247BO-104283, 3247BO-104288, 3247BO-104284, 3247-065896, 3100-059302, 3200-052720, 3200-042532 and 4026-028099), The Federal Office for Forest, Environment and Landscape, The Federal Office of Public Health, The Federal Office of Roads and Transport, the Canton's Government of Aargan, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, Valais and Zürich, the Swiss Lung League, The Canton's Lung League of Basel Stadt/ Basel, Landschaft, Geneva, Ticino, Valais and Zurich, SUVA, Freiwillige Akademische Gesellschaft, UBS Wealth Foundation, Talecris Biotherapeutics GmbH, Abbott Diagnostics, European Commission 018996 (GABRIEL), Wellcome Trust WT 084703MA, UK: Medical Research Council (Grant Number 92091). Support also provided by the National Institute for Health Research through the Primary Care Research Network. ; Peer Reviewed
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Download ; Objective: Regular physical activity may be associated with improved lung function via reduced systemic inflammation, although studies exploring this mechanism are rare. We evaluated the role of C-reactive protein in blood, which is a common marker of systemic inflammation, on the association of physical activity with forced expiratory volume in one second and forced vital capacity. Methods: Cross-sectional data on spirometry, C-reactive protein levels and self-reported physical activity (yes/no; ≥2 times and ≥1hr per week of vigorous physical activity) were available in the European Community Respiratory Health Survey (N = 2347 adults, 49.3% male, 28-56 years-old). A subsample was also assessed 10 years later using the International Physical Activity Questionnaire, and tertiles of Metabolic Equivalent of Task-minutes per week spent in vigorous, moderate and walking activities were calculated (N = 671, 49.6% male, 40-67 years-old). Adjusted cross-sectional mixed linear regression models and the "mediate" package in "R" were used to assess the presence of mediation. Results: Despite positive significant associations between nearly all physical activity metrics with forced expiratory volume in one second and forced vital capacity, there was no evidence that C-reactive protein levels played a role. An influence of C-reactive protein levels was only apparent in the smaller subsample when comparing the medium to low tertiles of moderate activity (mean difference [95% CIs]: 21.1ml [5.2, 41.9] for forced expiratory volume in one second and 17.3ml [2.6, 38.0] for forced vital capacity). Conclusions: In a population of adults, we found no consistent evidence that the association of physical activity with forced expiratory volume in one second or forced vital capacity is influenced by the level of C-reactive protein in blood. ; European Union ...
Publisher's version (útgefin grein). ; Background Tobacco consumption is the largest avoidable health risk. Understanding changes of smoking over time and across populations is crucial to implementing health policies. We evaluated trends in smoking initiation between 1970 and 2009 in random samples of European populations. Methods We pooled data from six multicentre studies involved in the Ageing Lungs in European Cohorts consortium, including overall 119,104 subjects from 17 countries (range of median ages across studies: 33–52 years). We estimated retrospectively trends in the rates of smoking initiation (uptake of regular smoking) by age group, and tested birth cohort effects using Age-Period-Cohort (APC) modelling. We stratified all analyses by sex and region (North, East, South, West Europe). Results Smoking initiation during late adolescence (16–20 years) declined for both sexes and in all regions (except for South Europe, where decline levelled off after 1990). By the late 2000s, rates of initiation during late adolescence were still high (40–80 per 1000/year) in East, South, and West Europe compared to North Europe (20 per 1000/year). Smoking initiation rates during early adolescence (11–15 years) showed a marked increase after 1990 in all regions (except for North European males) but especially in West Europe, where they reached 40 per 1000/year around 2005. APC models supported birth cohort effects in the youngest cohorts. Conclusion Smoking initiation is still unacceptably high among European adolescents, and increasing rates among those aged 15 or less deserve attention. Reducing initiation in adolescents is fundamental, since youngsters are particularly vulnerable to nicotine addiction and tobacco adverse effects. ; This study has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 633212. DJ has received support from the European Union and the Medical Research Council. National funders who supported data collection in the original cohort and cross-sectional studies are listed in S2 Appendix. The funders had no role in the writing of the manuscript or the decision to submit it for publication. The corresponding author had full access to all the data and had final responsibility for the decision to submit for publication. ; Peer Reviewed
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files ; Tobacco consumption is the largest avoidable health risk. Understanding changes of smoking over time and across populations is crucial to implementing health policies. We evaluated trends in smoking initiation between 1970 and 2009 in random samples of European populations. We pooled data from six multicentre studies involved in the Ageing Lungs in European Cohorts consortium, including overall 119,104 subjects from 17 countries (range of median ages across studies: 33-52 years). We estimated retrospectively trends in the rates of smoking initiation (uptake of regular smoking) by age group, and tested birth cohort effects using Age-Period-Cohort (APC) modelling. We stratified all analyses by sex and region (North, East, South, West Europe). Smoking initiation during late adolescence (16-20 years) declined for both sexes and in all regions (except for South Europe, where decline levelled off after 1990). By the late 2000s, rates of initiation during late adolescence were still high (40-80 per 1000/year) in East, South, and West Europe compared to North Europe (20 per 1000/year). Smoking initiation rates during early adolescence (11-15 years) showed a marked increase after 1990 in all regions (except for North European males) but especially in West Europe, where they reached 40 per 1000/year around 2005. APC models supported birth cohort effects in the youngest cohorts. Smoking initiation is still unacceptably high among European adolescents, and increasing rates among those aged 15 or less deserve attention. Reducing initiation in adolescents is fundamental, since youngsters are particularly vulnerable to nicotine addiction and tobacco adverse effects. ; European Union's Horizon 2020 research and innovation programme European Union Medical Research Council
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Download ; Patients with concomitant features of asthma and chronic obstructive pulmonary disease (COPD) have a heavy disease burden.Using data collected prospectively in the European Community Respiratory Health Survey, we compared the risk factors, clinical history and lung function trajectories from early adulthood to late sixties of middle-aged subjects with asthma+COPD (n=179), past (n=263) or current (n=808) asthma alone, COPD alone (n=111) or none of these (n=3477).Interview data and pre-bronchodilator forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were obtained during three clinical examinations in 1991-1993, 1999-2002 and 2010-2013. Disease status was classified in 2010-2013, when the subjects were aged 40-68 years, according to the presence of fixed airflow obstruction (post-bronchodilator FEV1/FVC below the lower limit of normal), a lifetime history of asthma and cumulative exposure to tobacco or occupational inhalants. Previous lung function trajectories, clinical characteristics and risk factors of these phenotypes were estimated.Subjects with asthma+COPD reported maternal smoking (28.2%) and respiratory infections in childhood (19.1%) more frequently than subjects with COPD alone (20.9% and 14.0%, respectively). Subjects with asthma+COPD had an impairment of lung function at age 20 years that tracked over adulthood, and more than half of them had asthma onset in childhood. Subjects with COPD alone had the highest lifelong exposure to tobacco smoking and occupational inhalants, and they showed accelerated lung function decline during adult life.The coexistence between asthma and COPD seems to have its origins earlier in life compared to COPD alone. These findings suggest that prevention of this severe condition, which is typical at older ages, should start in childhood. ; European Union's Horizon 2020 Research ...
Publisher's version (útgefin grein) ; Emerging evidence suggests that parents' preconception exposures may influence offspring health. We aimed to investigate maternal and paternal smoking onset in specific time windows in relation to offspring body mass index (BMI) and fat mass index (FMI). We investigated fathers (n = 2111) and mothers (n = 2569) aged 39–65 years, of the population based RHINE and ECRHS studies, and their offspring aged 18–49 years (n = 6487, mean age 29.6 years) who participated in the RHINESSA study. BMI was calculated from self-reported height and weight, and FMI was estimated from bioelectrical impedance measures in a subsample. Associations with parental smoking were analysed with generalized linear regression adjusting for parental education and clustering by study centre and family. Interactions between offspring sex were analysed, as was mediation by parental pack years, parental BMI, offspring smoking and offspring birthweight. Fathers' smoking onset before conception of the offspring (onset ≥15 years) was associated with higher BMI in the offspring when adult (β 0.551, 95%CI: 0.174–0.929, p = 0.004). Mothers' preconception and postnatal smoking onset was associated with higher offspring BMI (onset <15 years: β1.161, 95%CI 0.378–1.944; onset ≥15 years: β0.720, 95%CI 0.293–1.147; onset after offspring birth: β2.257, 95%CI 1.220–3.294). However, mediation analysis indicated that these effects were fully mediated by parents' postnatal pack years, and partially mediated by parents' BMI and offspring smoking. Regarding FMI, sons of smoking fathers also had higher fat mass (onset <15 years β1.604, 95%CI 0.269–2.939; onset ≥15 years β2.590, 95%CI 0.544–4.636; and onset after birth β2.736, 95%CI 0.621–4.851). There was no association between maternal smoking and offspring fat mass. We found that parents' smoking before conception was associated with higher BMI in offspring when they reached adulthood, but that these effects were mediated through parents' pack years, suggesting that cumulative smoking exposure during offspring's childhood may elicit long lasting effects on offspring BMI. ; Co-ordination of the RHINESSA study has received funding from the Research Council of Norway (Grants No. 274767, 214123, 228174, 230827 and 273838), ERC StG project BRuSH #804199, the European Union's Horizon 2020 research and innovation program under grant agreement No. 633212 (the ALEC Study WP2), the Bergen Medical Research Foundation, and the Western Norwegian Regional Health Authorities (Grants No. 912011, 911892 and 911631). Study centres have further received local funding from the following: Bergen: the above grants for study establishment and co-ordination, and, in addition, World University Network (RDF and Sustainability grant), Norwegian Labour Inspection, and the Norwegian Asthma and Allergy Association. Albacete and Huelva: SEPAR. Fondo de Investigación Sanitaria (FIS PS09). Gøteborg, Umeå and Uppsala: the Swedish Lung Foundation, the Swedish Asthma and Allergy Association. Reykjavik: Iceland University. Melbourne: NHMRC, Melbourne University, Tartu: the Estonian Research Council (Grant No. PUT562). Århus: The Danish Wood Foundation (Grant No. 444508795), the Danish Working Environment Authority (Grant No. 20150067134). The RHINE study received funding by Norwegian Research Council, Norwegian Asthma and Allergy Association, Danish Lung Association, Swedish Heart and Lung Foundation, Vårdal Foundation for Health Care Science and Allergy Research, Swedish Asthma and Allergy Association, Swedish Lung Foundation, Icelandic Research Council, and Estonian Science Foundation. The co-ordination of ECRHS was supported by European Union's Horizon 2020 research and innovation program under grant agreement No. 633212 (the ALEC Study), the European Commission frameworks 5 and 7 (ECRHS I and II) and the Medical Research Council (ECRHS III). ; Peer Reviewed
Introduction Sleep length has been associated with obesity and various adverse health outcomes. The possible association of sleep length and respiratory symptoms has not been previously described. The aim of this study was to investigate the association between sleep length and respiratory symptoms and whether such an association existed independent of obesity. Methods This is a multicentre, cross-sectional, population-based study performed in 23 centres in 10 different countries. Participants (n=5079, 52.3% males) were adults in the third follow-up of the European Community Respiratory Health Survey III. The mean±SD age was 54.2±7.1 (age range 39–67 years). Information was collected on general and respiratory health and sleep characteristics. Results The mean reported nighttime sleep duration was 6.9±1.0 hours. Short sleepers (<6 hours per night) were n=387 (7.6%) and long sleepers (≥9 hours per night) were n=271 (4.3%). Short sleepers were significantly more likely to report all respiratory symptoms (wheezing, waking up with chest tightness, shortness of breath, coughing, phlegm and bronchitis) except asthma after adjusting for age, gender, body mass index (BMI), centre, marital status, exercise and smoking. Excluding BMI from the model covariates did not affect the results. Short sleep was related to 11 out of 16 respiratory and nasal symptoms among subjects with BMI ≥30 and 9 out of 16 symptoms among subjects with BMI <30. Much fewer symptoms were related to long sleep, both for subjects with BMI <30 and ≥30. Conclusions Our results show that short sleep duration is associated with many common respiratory symptoms, and this relationship is independent of obesity. ; The ALEC Study is funded by the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 633212. ; Peer Reviewed
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files ; Introduction Sleep length has been associated with obesity and various adverse health outcomes. The possible association of sleep length and respiratory symptoms has not been previously described. The aim of this study was to investigate the association between sleep length and respiratory symptoms and whether such an association existed independent of obesity. Methods This is a multicentre, cross-sectional, population-based study performed in 23 centres in 10 different countries. Participants (n=5079, 52.3% males) were adults in the third follow-up of the European Community Respiratory Health Survey III. The mean +/- SD age was 54.2 +/- 7.1 (age range 39-67 years). Information was collected on general and respiratory health and sleep characteristics. Results The mean reported nighttime sleep duration was 6.9 +/- 1.0 hours. Short sleepers (= 9 hours per night) were n=271 (4.3%). Short sleepers were significantly more likely to report all respiratory symptoms (wheezing, waking up with chest tightness, shortness of breath, coughing, phlegm and bronchitis) except asthma after adjusting for age, gender, body mass index (BMI), centre, marital status, exercise and smoking. Excluding BMI from the model covariates did not affect the results. Short sleep was related to 11 out of 16 respiratory and nasal symptoms among subjects with BMI >= 30 and 9 out of 16 symptoms among subjects with BMI = 30. Conclusions Our results show that short sleep duration is associated with many common respiratory symptoms, and this relationship is independent of obesity. ; European Union
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files ; We assessed associations between physical activity and lung function, and its decline, in the prospective population-based European Community Respiratory Health Survey cohort. ; FEV1 and FVC were measured in 3912 participants at 27-57 years and 39-67 years (mean time between examinations=11.1 years). Physical activity frequency and duration were assessed using questionnaires and used to identify active individuals (physical activity ≥2 times and ≥1 hour per week) at each examination. Adjusted mixed linear regression models assessed associations of regular physical activity with FEV1 and FVC. ; Physical activity frequency and duration increased over the study period. In adjusted models, active individuals at the first examination had higher FEV1 (43.6 mL (95% CI 12.0 to 75.1)) and FVC (53.9 mL (95% CI 17.8 to 89.9)) at both examinations than their non-active counterparts. These associations appeared restricted to current smokers. In the whole population, FEV1 and FVC were higher among those who changed from inactive to active during the follow-up (38.0 mL (95% CI 15.8 to 60.3) and 54.2 mL (95% CI 25.1 to 83.3), respectively) and who were consistently active, compared with those consistently non-active. No associations were found for lung function decline. ; Leisure-time vigorous physical activity was associated with higher FEV1 and FVC over a 10-year period among current smokers, but not with FEV1 and FVC decline. ; European Union
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Download ; Background: Fractional exhaled nitric oxide (FeNO) is a marker of type-2 inflammation used both to support diagnosis of asthma and follow up asthma patients. The associations of FeNO with lung function decline and bronchodilator (BD) response have been studied only scarcely in large populations. Objectives: To study the association between FeNO and a) retrospective lung function decline over 20 years, and b) lung function response to BD among asthmatic subjects compared with non-asthmatic subjects and with regards to current smoking and sex. Methods: Longitudinal analyses of previous lung function decline and FeNO level at follow-up and cross-sectional analyses of BD response and FeNO levels in 4257 participants (651 asthmatics) from the European Community Respiratory Health Survey. Results: Among asthmatic subjects, higher percentage declines of FEV1 and FEV1/FVC were associated with higher FeNO levels (p = 0.001 for both) at follow-up. These correlations were found mainly among non-smoking individuals (p = 0.001) and females (p = 0.001) in stratified analyses.Percentage increase in FEV1 after BD was positively associated with FeNO levels in non-asthmatic subjects. Further, after stratified for sex and smoking separately, a positive association was seen between FEV1 and FeNO levels in non-smokers and women, regardless of asthma status. Conclusions: We found a relationship between elevated FeNO and larger FEV1 decline over 20 years among subjects with asthma who were non-smokers or women. The association between elevated FeNO levels and larger BD response was found in both non-asthmatic and asthmatic subjects, mainly in women and non-smoking subjects. Keywords: Bronchodilatation; Epidemiology; FeNO; Lung function. ; UK Research & Innovation (UKRI) Medical Research Council UK (MRC) European Commission Spanish Government Generalitat ...
Publisher's version (útgefin grein) ; Objectives: Menopause involves hypoestrogenism, which is associated with numerous detrimental effects, including on respiratory health. Hormone replacement therapy (HRT) is often used to improve symptoms of menopause. The effects of HRT on lung function decline, hence lung ageing, have not yet been investigated despite the recognized effects of HRT on other health outcomes. Study design: The population-based multi-centre European Community Respiratory Health Survey provided complete data for 275 oral HRT users at two time points, who were matched with 383 nonusers and analysed with a two-level linear mixed effects regression model. Main outcome measures: We studied whether HRT use was associated with the annual decline in forced vital capacity (FVC) and forced expiratory volume in one second (FEV1). Results: Lung function of women using oral HRT for more than five years declined less rapidly than that of nonusers. The adjusted difference in FVC decline was 5.6 mL/y (95%CI: 1.8 to 9.3, p = 0.01) for women who had taken HRT for six to ten years and 8.9 mL/y (3.5 to 14.2, p = 0.003) for those who had taken it for more than ten years. The adjusted difference in FEV1 decline was 4.4 mL/y (0.9 to 8.0, p = 0.02) with treatment from six to ten years and 5.3 mL/y (0.4 to 10.2, p = 0.048) with treatment for over ten years. Conclusions: In this longitudinal population-based study, the decline in lung function was less rapid in women who used HRT, following a dose-response pattern, and consistent when adjusting for potential confounding factors. This may signify that female sex hormones are of importance for lung ageing. ; Kai Triebner has received a postdoctoral fellowship from the University of Bergen. The present analyses are part of a project funded by the Norwegian Research Council (Project No. 228174) as well as part of the Ageing Lungs in European Cohorts (ALEC) Study (www.alecstudy.org), which has received funding from the European Union's Horizon 2020 research and innovation program (Grant No. 633212). The European Commission supported the European Community Respiratory Health Survey, as part of the "Quality of Life" program. Bodies funding the local studies are listed in the online data supplement. The funding sources had no involvement in the conduct of the research and/or preparation of the article, in study design, in the collection, analysis and interpretation of data, in the writing of the report or in the decision to submit the article for publication. ; Peer Reviewed
To access publisher's full text version of this article click on the hyperlink below ; Very few studies have examined whether a long-term beneficial effect of physical activity on lung function can be influenced by living in polluted urban areas. We assessed whether annual average residential concentrations of nitrogen dioxide (NO Associations between repeated assessments (at 27-57 and 39-67 years) of being physically active (physical activity: ≥2 times and ≥1 h per week) and forced expiratory volume in 1 s (FEV Among current smokers, physical activity and lung function were positively associated regardless of air pollution levels. Among never-smokers, physical activity was associated with lung function in areas with low/medium NO ; European Union
Publisher's version (útgefin grein) ; Background: Emerging evidence suggests that androgens and estrogens have a role in respiratory health, but it is largely unknown whether levels of these hormones can affect lung function in adults from the general population. This study investigated whether serum dehydroepiandrosterone sulfate (DHEA-S), a key precursor of both androgens and estrogens in peripheral tissues, was related to lung function in adult women participating in the European Community Respiratory Health Survey (ECRHS). Methods: Lung function and serum DHEA-S concentrations were measured in n = 2,045 and n = 1,725 women in 1999–2002 and in 2010–2013, respectively. Cross-sectional associations of DHEA-S levels (expressed as age-adjusted z-score) with spirometric outcomes were investigated, adjusting for smoking habits, body mass index, menopausal status, and use of corticosteroids. Longitudinal associations of DHEA-S levels in 1999–2002 with incidence of restrictive pattern and airflow limitation in 2010–2013 were also assessed. Findings: Women with low DHEA-S (z-score<-1) had lower FEV1 (% of predicted, adjusted difference: -2.2; 95%CI: -3.5 to -0.9) and FVC (-1.7; 95%CI: -2.9 to -0.5) and were at a greater risk of having airflow limitation and restrictive pattern on spirometry than women with higher DHEA-S levels. In longitudinal analyses, low DHEA-S at baseline was associated with a greater incidence of airflow limitation after an 11-years follow-up (incidence rate ratio, 3.43; 95%CI: 1.91 to 6.14). Interpretation: Low DHEA-S levels in women were associated with impaired lung function and a greater risk of developing airflow limitation later in adult life. Our findings provide new evidence supporting a role of DHEA-S in respiratory health. ; The current study is part of the Ageing for Lungs in European Cohorts (ALEC) study ( www.alecstudy.org ), ALEC has received funding from the European Union's Horizon 2020 research and innovation program [grant agreement No. 633212]. The coordination of the ECRHS was supported by the European Commission [grant agreement no. QLK4-CT-1999–01237] and the Medical Research Council [grant agreement no. 92091]. The hormones measures at ECRHS III were funded by the Norwegian Research Council [grant agreement no. 228174]. Hormones measures at ECRHS II were funded by the local budget of the ECRHS Paris team, INSERM U700, Epidemiology, with further support from the Comité National contre les Maladies Respiratoires (CNMR), the centre d'Investigation Clinique (CIC), Bichat Hospital, and the French Agence Nationale de la Recherche (ANR). Bodies funding the local studies are listed in the Online Supplement. The funding sources had no role in the writing of the manuscript or the decision to submit it for publication. The corresponding authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. ; Peer Reviewed