Investigating the contribution of sea salt to PM10 concentration values on the coast of Portugal
In: Air quality, atmosphere and health: an international journal, Band 14, Heft 10, S. 1697-1708
ISSN: 1873-9326
13 Ergebnisse
Sortierung:
In: Air quality, atmosphere and health: an international journal, Band 14, Heft 10, S. 1697-1708
ISSN: 1873-9326
In: Air quality, atmosphere and health: an international journal, Band 12, Heft 6, S. 731-741
ISSN: 1873-9326
Each year, all Member States (MS) have to deliver their national emissions inventory to the European Union for all activity sectors, following the requirements of the CLRTAP programme. Recently, the specifications of this emissions report changed, MS emissions data had to be reported in grid cells with a resolution of 0.5° × 0.5°, and now, from 2015 forward, they must use a higher resolution grid (0.1° × 0.1°). The purpose of this study is to investigate the main differences found between these two emissions inventories for Europe, focusing on Portugal as a case study, using their available common year (2015). Differences on emissions values and their spatial distribution were analysed per sector and pollutant. Additionally, to evaluate and compare the accuracy of both datasets, air quality modelling simulations were performed, and the resulting pollutant concentrations were validated using data from observations. The results found indicated major differences in several MS (e.g. France, Italy, Germany and Spain). Portugal was not one of the delta hotspots but significant differences were still found, mainly for NOx emissions for the transport sectors, both emissions and concentrations in urban areas, as well as NO2 concentrations throughout the study domain. The analysis of the air quality modelling outputs indicates that the EMEP0.1 inventory does not improve model performance, which suggests that the methodology to build EMEP0.1 was not adequate. This work highlights the importance of accurately estimating emissions data and confirms what other studies already indicated regarding uncertainties: solely improving the emissions inventory resolution does not necessarily imply higher accuracy in the results. ; published
BASE
In: Air quality, atmosphere and health: an international journal, Band 10, Heft 4, S. 447-455
ISSN: 1873-9326
In: Air quality, atmosphere and health: an international journal, Band 11, Heft 3, S. 363-363
ISSN: 1873-9326
The air quality standards defined by the World Health Organization (WHO), and updated in 2005, continue to be much more exigent than current EU legislation, namely regarding the most critical pollutants over Europe: ozone (O3) and particulate matter (PM10 and PM2.5). This work intends to evaluate the fulfilment of these WHO standards in the present and in the future, including climate change effects. This study will be focused on Portugal, where each year, the O3 and PM10 concentrations exceed the legislated limit values. For this, regional air quality simulations for present and future periods were conducted, with CAMx version 6.0, to investigate the impacts of climate change and anthropogenic emission projections on air quality over Portugal in 2050. The climate and emission projections for 2050 were derived from the Representative Concentrations Pathway 8.5 scenario. Modelling results show that, over Portugal, the WHO standards are already not being fulfilled and will continue to be surpassed in the future. When considering climate change and projected anthropogenic emissions and comparing them to the actual scenario, a reduction in the maximum 8-h daily O3 concentration is expected. For PM, the results indicate serious problems regarding the health impact expected for both long-term and short-term exposure. The annual averages for both PM10 and PM2.5 exceed the AQG over the country. The PM short-term exposure is already very high for current conditions and higher impacts are expected for future scenario, in particular regarding the PM10 values. This air quality degradation is caused by the warmer and dryer conditions and the increase of background concentrations of pollutants expected for the 2050 climate. The results evidence that human health protection will be even more critical in the future, particularly for particulate matter. Furthermore, urgent air quality management strategies need to be designed, with transboundary cooperation and implementation. ; The authors wish to thank the financial support of ...
BASE
In: Air quality, atmosphere and health: an international journal, Band 11, Heft 3, S. 353-362
ISSN: 1873-9326
In: Air quality, atmosphere and health: an international journal, Band 9, Heft 7, S. 775-783
ISSN: 1873-9326
In: Economic Analysis and Policy, Band 67, S. 261-272
When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way – i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3 M €·y− 1. The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored.
BASE
When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored. ; The authors acknowledge the financial support of FEDER through the COMPETE Programme and the national funds from FCT – Science and Technology Portuguese Foundation - within projects PEst-C/MAR/LA0017/2013 and UID/AMB/50017/2013, for the MAPLIA Project (PTDC/AAG-MAA/4077/2012), the post doc grant of J. Ferreira (SFRH/BPD/100346/2014), and the PhD grants of H. Relvas (SFRH/BD/101660/2014), C. Gama (SFRH/BD/87468/2012) and C. Silveira SFRH/BD/112343/2015).
BASE
International audience ; This chapter provides a review, derived from the extended survey conducted within the APPRAISAL project, of the integrated assessment methodologies used in different countries to design air quality plans and to estimate the effects of emission abatement policy options on human health. The final purpose of this review is to foster the dissemination of knowledge on integrated assessment for air quality planning at regional and local scales, and to provide policy makers and regulatory bodies across EU member states with a broader understanding of the underlying scientific concepts.
BASE
International audience ; This chapter provides a review, derived from the extended survey conducted within the APPRAISAL project, of the integrated assessment methodologies used in different countries to design air quality plans and to estimate the effects of emission abatement policy options on human health. The final purpose of this review is to foster the dissemination of knowledge on integrated assessment for air quality planning at regional and local scales, and to provide policy makers and regulatory bodies across EU member states with a broader understanding of the underlying scientific concepts.
BASE