A Systematic Review of the Routes and Forms of Exposure to Engineered Nanomaterials
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 62, Heft 6, S. 639-662
ISSN: 2398-7316
22 Ergebnisse
Sortierung:
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 62, Heft 6, S. 639-662
ISSN: 2398-7316
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 61, Heft 8, S. 939-953
ISSN: 2398-7316
In: The annals of occupational hygiene: an international journal published for the British Occupational Hygiene Society, Band 60, Heft 2, S. 263-269
ISSN: 1475-3162
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 63, Heft 2, S. 133-147
ISSN: 2398-7316
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 62, Heft 6, S. 733-741
ISSN: 2398-7316
In: Fucic , A , Duca , R , Galea , K S , Maric , T , Garcia , K , Bloom , M , Andersen , H R & Vena , J 2021 , ' Reproductive health risks associated with occupational and environmental exposure to pesticides ' , International Journal of Environmental Research and Public Health , vol. 18 , no. 12 , 6576 . https://doi.org/10.3390/ijerph18126576
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical expo-sures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine dis-ruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
BASE
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 65, Heft 9, S. 1011-1028
ISSN: 2398-7316
AbstractIntroductionOil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry.MethodA scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005—end of 2019.ResultsIn total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector.Discussion and conclusionNew exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.
Inhalation of ash can be of great concern for affected communities, during and after volcanic eruptions. Governmental and humanitarian agencies recommend and distribute a variety of respiratory protection (RP), most commonly surgical masks. However, there is currently no evidence on how effective such masks are in protecting wearers from volcanic ash. In Part I of this study (Mueller et al., Submitted), we assessed the filtration efficiency (FE) of 17 materials from different forms of RP against volcanic ash and a surrogate, low-toxicity aerosol, Aloxite. Based on those results, we now present the findings from a volunteer simulation study to test the effect of facial fit through assessment of Total Inward Leakage (TIL). Four different disposable RP types that demonstrated very high median FE (≥ 96% for Aloxite; ≥ 89% for volcanic ash) were tested without provision of training on fit. These were an industry-certified mask (N95-equiv.); a surgical mask from Japan designed to filter PM2.5; a flat-fold basic mask from Indonesia; and a standard surgical mask from Mexico, which was also tested with an added medical bandage on top, as an additional intervention to improve fit. Ten volunteers (6 female, 4 male) were recruited. Each RP type was worn by volunteers under two different conditions simulating cleaning-up activities during/after volcanic ashfall. Each activity lasted 10 minute s and two repeats were completed for each RP type per activity. Dust (as PM2.5) concentration inside and outside the mask was measured with two TSI SidePak aerosol monitors (Models AM510 and AM520, TSI, Minnesota, USA) to calculate TIL. A questionnaire was administered after each test to collect perceptions of fit, comfort, protection and breathability. The best-performing RP type, across both activities, was the industry-certified N95-equiv. mask with 9% mean TIL. The standard surgical mask and the basic flat-fold mask both performed worst (35% TIL). With the additional bandage intervention, the surgical mask mean TIL improved to 24%. The PM2.5 surgical mask performed similarly, with 22% TIL. The N95-equiv. mask was perceived to provide the best protection, but was also perceived as being uncomfortable and more difficult to breathe through. This study provides a first objective evidence base for the effectiveness of a selection of RP types typically worn around the world during volcanic crises. The findings will help agencies to make informed decisions on the procurement and distribution of RP in future eruptions.
BASE
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
BASE
The Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019–2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, but SMIs showed ...
BASE
Background and aimThe Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019–2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, ...
BASE
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 68, Heft 6, S. 657-664
ISSN: 2398-7316
Abstract
Background
Several measures of occupational exposure to pesticides have been used to study associations between exposure to pesticides and neurobehavioral outcomes. This study assessed the impact of different exposure measures for glyphosate and mancozeb on the association with neurobehavioral outcomes based on original and recalled self-reported data with 246 smallholder farmers in Uganda.
Methods
The association between the 6 exposure measures and 6 selected neurobehavioral test scores was investigated using linear multivariable regression models. Exposure measures included original exposure measures for the previous year in 2017: (i) application status (yes/no), (ii) number of application days, (iii) average exposure-intensity scores (EIS) of an application and (iv) number of EIS-weighted application days. Two additional measures were collected in 2019: (v) recalled application status and (vi) recalled EIS for the respective periods in 2017.
Results
Recalled applicator status and EIS were between 1.2 and 1.4 times more frequent and higher for both pesticides than the original application status and EIS. Adverse associations between the different original measures of exposure to glyphosate and 4 neurobehavioral tests were observed. Glyphosate exposure based on recalled information and all mancozeb exposure measures were not associated with the neurobehavioral outcomes.
Conclusions
The relation between the different original self-reported glyphosate exposure measures and neurobehavioral test scores appeared to be robust. When based on recalled exposure measures, associations observed with the original exposure measures were no longer present. Therefore, future epidemiological studies on self-reported exposure should critically evaluate the potential bias towards the null in observed exposure–response associations.
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 64, Heft 6, S. 569-585
ISSN: 2398-7316
Abstract
Diisocyanates are a group of chemicals that are widely used in occupational settings. They are known to induce various health effects, including skin- and respiratory tract sensitization resulting in allergic dermatitis and asthma. Exposure to diisocyanates has been studied in the past decades by using different types of biomonitoring markers and matrices. The aim of this review as part of the HBM4EU project was to assess: (i) which biomarkers and matrices have been used for biomonitoring diisocyanates and what are their strengths and limitations; (ii) what are (current) biomonitoring levels of the major diisocyanates (and metabolites) in workers; and (iii) to characterize potential research gaps. For this purpose we conducted a systematic literature search for the time period 2000–end 2018, thereby focussing on three types of diisocyanates which account for the vast majority of the total isocyanate market volume: hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and 4,4′-methylenediphenyl diisocyanate (MDI). A total of 28 publications were identified which fulfilled the review inclusion criteria. The majority of these studies (93%) investigated the corresponding diamines in either urine or plasma, but adducts have also been investigated by several research groups. Studies on HDI were mostly in the motor vehicle repair industry [with urinary hexamethylene diamine result ranging from 0.03 to 146.5 µmol mol−1 creatinine]. For TDI, there is mostly data on foam production [results for urinary toluene diamine ranging from ~0.01 to 97 µmol mol−1 creatinine] whereas the available MDI data are mainly from the polyurethane industry (results for methylenediphenyl diamine range from 0.01 to 32.7 µmol mol−1 creatinine). About half of the studies published were prior to 2010 hence might not reflect current workplace exposure. There is large variability within and between studies and across sectors which could be potentially explained by several factors including worker or workplace variability, short half-lives of biomarkers, and differences in sampling strategies and analytical techniques. We identified several research gaps which could further be taken into account when studying diisocyanates biomonitoring levels: (i) the development of specific biomarkers is promising (e.g. to study oligomers of HDI which have been largely neglected to date) but needs more research before they can be widely applied, (ii) since analytical methods differ between studies a more uniform approach would make comparisons between studies easier, and (iii) dermal absorption seems a possible exposure route and needs to be further investigated. The use of MDI, TDI, and HDI has been recently proposed to be restricted in the European Union unless specific conditions for workers' training and risk management measures apply. This review has highlighted the need for a harmonized approach to establishing a baseline against which the success of the restriction can be evaluated.
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 66, Heft 6, S. 754-767
ISSN: 2398-7316
Abstract
Background
Occupational epidemiological studies on pesticide use commonly rely on self-reported questionnaire or interview data to assess exposure. Insight into recall accuracy is important, as misclassification of exposures due to imperfect recall can bias risk estimates.
Methods
We assessed the ability of workers in three UK cohorts (Prospective Investigation of Pesticide Applicators' Health [PIPAH], Pesticide Users' Health Study [PUHS], and Study of Health in Agricultural Work [SHAW]) to remember their working history related to pesticide exposure over time periods ranging from 3 to 14 years prior. During 2019–2020, cohort participants were re-surveyed using a similar questionnaire to that used previously. We compared recall of responses at follow-up to those reported at baseline related to crops/areas of work, use of personal protective equipment (PPE) items, hygiene habits, frequency of pesticide use, and application method. To assess the extent of recall, we used sensitivity, specificity, the percentage of overall agreement, and area under the curve (AUC) values. We also examined the presence of over or underestimation of recalled years, and days and hours per year, of working with pesticides using geometric mean ratios (GMR) and regression analysis to investigate any trends based on demographic characteristics.
Results
There were 643 individuals who completed both the baseline and follow-up surveys in the three cohorts with response rates ranging from 17 to 46%. There was a strong correlation (rho = 0.77) between the baseline and recalled years working with pesticides, though higher values were reported at follow-up (GMR = 1.18 [95% confidence interval: 1.07–1.30]) with no consistent differences by demographic characteristics. There was stronger agreement in the recalled days compared to hours per year in two of the cohorts. Recall for a number of exposure determinants across short and longer periods entailed overall agreement of >70%, though with some differences: for example, sensitivity for long-term recall of crops was poor (<43% in PUHS), whereas short-term recall of hygiene practices was good (AUC range = 0.65–1.00 in PIPAH).
Conclusion
Results indicate that recall ability may deteriorate over a longer period. Although low-response rates may require these findings to be interpreted with caution, recall for a number of exposure determinants appeared reliable, such as crops and hygiene practices within 3 years, as well as days per year working with pesticides.
In: Annals of work exposures and health: addressing the cause and control of work-related illness and injury, Band 67, Heft 6, S. 758-771
ISSN: 2398-7316
Abstract
Wood dust is an established carcinogen also linked to several non malignant respiratory disorders. A major limitation in research on wood dust and its health effects is the lack of (historical) quantitative estimates of occupational exposure for use in general population-based case-control or cohort studies. The present study aimed to develop a multinational quantitative Job Exposure Matrix (JEM) for wood dust exposure using exposure data from several Northern and Central European countries. For this, an occupational exposure database containing 12653 personal wood dust measurements collected between 1978 and 2007 in Denmark, Finland, France, The Netherlands, Norway, and the United Kingdom (UK) was established. Measurement data were adjusted for differences in inhalable dust sampling efficiency resulting from the use of different dust samplers and analysed using linear mixed effect regression with job codes (ISCO-88) and country treated as random effects. Fixed effects were the year of measurement, the expert assessment of exposure intensity (no, low, and high exposure) for every ISCO-88 job code from an existing wood dust JEM and sampling duration. The results of the models suggest that wood dust exposure has declined annually by approximately 8%. Substantial differences in exposure levels between countries were observed with the highest levels in the United Kingdom and the lowest in Denmark and Norway, albeit with similar job rankings across countries. The jobs with the highest predicted exposure are floor layers and tile setters, wood-products machine operators, and building construction labourers with geometric mean levels for the year 1997 between 1.7 and 1.9 mg/m3. The predicted exposure estimates by the model are compared with the results of wood dust measurement data reported in the literature. The model predicted estimates for full-shift exposures were used to develop a time-dependent quantitative JEM for exposure to wood dust that can be used to estimate exposure for participants of general population studies in Northern European countries on the health effects from occupational exposure to wood dust.