Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer
In: Materials and design, Band 177, S. 107849
ISSN: 1873-4197
8 Ergebnisse
Sortierung:
In: Materials and design, Band 177, S. 107849
ISSN: 1873-4197
BACKGROUND: There are limited data on the safe interval from diagnosis to surgery in patients with stage I esophageal adenocarcinoma. We hypothesized that increased time to surgery would be associated with worse survival and increased nodal upstaging. METHODS: The National Cancer Database (NCDB) was used to identify patients with cT1N0M0 esophageal adenocarcinoma (2004–2015) who underwent esophagectomy without induction therapy. The primary outcome was survival and the secondary outcomes were the rate of margin-positive resection and pathologic nodal upstaging. Time to surgery was modeled as a categorical variable, dividing patients into quartiles (Q1–4), and as a continuous variable using piecewise linear splines centered on 50 and 100 days. RESULTS: A total of 2495 patients met study criteria. When examined in quartiles, there was no difference in survival between groups based on time to surgery in both unadjusted and multivariable analysis. As a continuous variable, increasing time to surgery less than 50 days was associated with improved survival (HR 0.99; 95%CI 0.98–1.00), Time to surgery greater than 100 days was associated with worse survival (HR 1.00; 95%CI 1.00–1.01) and increased margin-positive resection (OR 1.01; 95%CI 1.00–1.02). Treatment at a high volume center, government insurance, and diagnosis and treatment at different centers were associated with surgery beyond 100 days CONCLUSIONS: Increasing time to surgery greater than 100 days is associated with worse outcomes in patients with stage I esophageal adenocarcinoma. In this patient population, esophagectomy should be offered as soon as safely possible.
BASE
The Earth's solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation. Here we show by first-principles molecular dynamics that the body-centered cubic phase of iron, recently demonstrated to be thermodynamically stable under the inner core conditions, is considerably less elastic than the hexagonal phase. Being a crystalline phase, the body-centered cubic phase of iron possesses the viscosity close to that of a liquid iron. The high attenuation of sound in the inner core is due to the unique diffusion characteristic of the body-centered cubic phase. The low viscosity of iron in the inner core enables the convection and resolves a number of controversies. ; Computations were performed using the facilities at the Swedish National Infrastructure for Computing (SNIC) located at the National Supercomputing Center in Linköping. The authors also wish to thank the Swedish Research Council (VR) for financial support (Grants 2013-5767, 2014-4750, and 2017-03744) and National Natural Science Foundation of China (Grant No. 11804175). A.B.B. and T.B. acknowledge support from Olle Engkvist Byggmästare Foundation. S.I.S. acknowledges the support from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-MatLiU No. 2009 00971). M.M. acknowledges financial support by the Spanish Ministry of Economy and Competitiveness (CGL2013- 41860-P and CGL2017-86070-R).
BASE
Drug substitution is a promising approach to reducing medication costs. To calculate the potential savings in a Medicare Part D plan from generic or therapeutic substitution for commonly prescribed drugs. Cross-sectional, simulation analysis. Low-income subsidy (LIS) beneficiaries (n = 145,056) and non low-income subsidy (non-LIS) beneficiaries (n = 1,040,030) enrolled in a large, national Part D health insurer in 2007 and eligible for a possible substitution. Using administrative data from 2007, we identified claims filled for brand-name drugs for which a direct generic substitute was available. We also identified the 50 highest cost drugs separately for LIS and non-LIS beneficiaries, and reached consensus on which drugs had possible therapeutic substitutes (27 for LIS, 30 for non-LIS). For each possible substitution, we used average daily costs of the original and substitute drugs to calculate the potential out-of-pocket savings, health plan savings, and when applicable, savings for the government/LIS subsidy. Overall, 39 % of LIS beneficiaries and 51 % of non-LIS beneficiaries were eligible for a generic and/or therapeutic substitution. Generic substitutions resulted in an average annual savings of $160 in the case of LIS beneficiaries and $127 in the case of non-LIS beneficiaries. Therapeutic substitutions resulted in an average annual savings of $452 in the case of LIS beneficiaries and $389 in the case of non-LIS beneficiaries. Our findings indicate that drug substitution, particularly therapeutic substitution, could result in significant cost savings. There is a need for additional studies evaluating the acceptability of therapeutic substitution interventions within Medicare Part D.
BASE
Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower (p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant (p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments. © 2004 Elsevier Ltd. All rights reserved.
BASE
Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM 2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM 2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM 2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle −1 km −1 respectively. Emission factors of WSII were 0.016 (F - ) ~ 4.17 (Cl − ) mg vehicle −1 km −1 , contributing about 9.8% to the PM 2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM 2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle −1 km −1 . Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle −1 km −1 , respectively. Stable carbon isotopic composition δ 13 C value was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM 2.5 mass, EC, OC, WSII except Cl - and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic emissions of PM 2.5 and its constituents from the on-road vehicular fleet in the PRD region retrieved from our study would be helpful for the assessment of past and future implementations of vehicle emission control policy.
BASE
Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle−1 km−1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl−) mg vehicle−1 km−1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle−1 km−1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle−1 km−1, respectively. Stable carbon isotopic composition δ13C value was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic emissions of PM2.5 and its constituents from the on-road vehicular fleet in the PRD region retrieved from our study would be helpful for the assessment of past and future implementations of vehicle emission control policy.
BASE
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; NSFC (China) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; SFI (Ireland) ; INFN (Italy) ; NASU (Ukraine) ; STFC (UK) ; NSF (USA) ; BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; SFFR (Ukraine) ; DOE (USA) ; MPG (Germany) ; FOM (The Netherlands) ; NWO (The Netherlands) ; MNiSW (Poland) ; NCN (Poland) ; MEN/IFA (Romania) ; MinES (Russia) ; FANO (Russia) ; MinECo (Spain) ; SNSF (Switzerland) ; SER (Switzerland) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIABelgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; Foundation for Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Consorzio per la Fisica (Trieste) ; MIUR (Italy) ; Thalis programme ; Aristeia programme ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; EPLANET ; Marie Sklodowska-Curie Actions ; ERC (European Union) ; Conseil general de Haute-Savoie ; Labex ENIGMASS ; OCEVU ; Region Auvergne (France) ; XuntaGal (Spain) ; GENCAT (Spain) ; Royal Society (UK) ; Royal Commission for the Exhibition of 1851 (UK) ; MIUR (Italy): 20108T4XTM ; The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
BASE