"The Black Lamb of the Black Sheep": Illegitimacy in the English Working Class, 1850-1939
In: Journal of social history, Band 37, Heft 2, S. 293-322
ISSN: 1527-1897
13 Ergebnisse
Sortierung:
In: Journal of social history, Band 37, Heft 2, S. 293-322
ISSN: 1527-1897
In: IEEE technology and society magazine: publication of the IEEE Society on Social Implications of Technology, Band 22, Heft 2, S. 8-11
ISSN: 0278-0097
In: Social history of medicine, Band 15, Heft 2, S. 354-355
ISSN: 1477-4666
In: IEEE technology and society magazine: publication of the IEEE Society on Social Implications of Technology, Band 21, Heft 1, S. 11-12
ISSN: 0278-0097
In: The national interest, Band 13, S. 93-99
ISSN: 0884-9382
IF IT TRANSPIRES THAT MR. GORBACHEV'S CENTRAL OBJECTIVE IS INDEED, AS HE INSISTS, TO PRESERVE AND REINVIGORATE SOCIALISM, FUTURE HISTORIANS MAY BE PUZZLED THAT HIS MOST ARDENT CHAMPION IN THE WEST SHOULD HAVE BEEN THE BRITISH PRIME MINISTER, MARGARET THATCHER. NOT CONTENT TO HAVE WON THREE ELECTIONS, TO HAVE CHANGED PROFOUNDLY THE PHILOSOPHY AND FORTUNES OF HER PARTY, AND TO HAVE REVERSED DRAMATICALLY BRITAIN'S POSTWAR ECONOMIC AND POLITICAL DECLINE, MRS. THATCHER HAS INSISTED THAT ONE OF HER MOST IMPORTANT REMAINING AMBITIONS IS TO DESTROY SOCIALISM.
Food reformulation policies aimed at reducing the risk of diet-related non-communicable diseases have been implemented in many countries. The degree of success of reformulation policies in changing the range of food options available to consumers has been a function of the design of these policies. Our objective was to review the different factors making the design and implementation of a food reformulation policy effective at improving populations' diets and health. In this narrative review, we present a logic model of the action of reformulation policies on consumer behaviour, dietary intake and population health. We set out how policy design could drive outcomes, and highlight the role for governments and public health agencies in promoting food reformulation that is effective in improving diet and health. The key drivers of success for reformulation policies include strong incentives, a tight implementation strategy, a focus on the overall nutritional quality of food products, rather than on individual nutrients, and effective monitoring and evaluation. Additionally, policies should mark the distinction between product reformulation and product differentiation, which have different nutrition and health outcomes.
BASE
In: Health & social work: a journal of the National Association of Social Workers, Band 36, Heft 4, S. 293-297
ISSN: 1545-6854
Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD (n=11) and low liver fat 'controls' (n= 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling. There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL1-triacylglycerol (TAG) after the high ( P <0.02) and low sugar ( P <0.0002) diets, a lower VLDL1-TAG fractional catabolic rate after the high sugar diet ( P <0.01), and a higher VLDL1-TAG production rate after the low sugar diet ( P <0.01), relative to controls. An effect of the high sugar diet, was to channel hepatic TAG into a higher production of VLDL1-TAG ( P <0.02) in the controls, but in contrast, a higher production of VLDL2-TAG ( P <0.05) in NAFLD. These dietary effects on VLDL subclass kinetics could be explained, in part, by differences in the contribution of fatty acids from intra-hepatic stores, and de novo lipogenesis. This study provides new evidence that liver fat accumulation leads to a differential partitioning of hepatic TAG into large and small VLDL subclasses, in response to high and low intakes of sugars. ; The work was supported by a UK government grant from the Biological Biotechnology Scientific Research Council (Grant no. BB/G009899/1); University of Surrey PhD scholarship for AM; Medical Research Council (body composition measurements) and infrastructure support from the National Institute of Health Research at the Cambridge Biomedical Research Centre.
BASE
Aims/hypothesis The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT. Methods Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18 months and 36 months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires. Conclusions/interpretation DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes. © 2014 The Author(s).
BASE
In: Koivula , R W , Heggie , A , Barnett , A , Cederberg , H , Hansen , T H , Koopman , A D , Ridderstrale , M , Rutters , F , Vestergaard , H , Gupta , R , Herrgard , S , Heymans , M W , Perry , M H , Rauh , S , Siloaho , M , Teare , H J A , Thorand , B , Bell , J , Brunak , S , Frost , G , Jablonka , B , Mari , A , McDonald , T J , Dekker , J M , Hansen , T , Hattersley , A , Laakso , M , Pedersen , O , Koivisto , V , Ruetten , H , Walker , M , Pearson , E & Franks , P W 2014 , ' Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium ' , Diabetologia , vol. 57 , no. 6 , pp. 1132-1142 . https://doi.org/10.1007/s00125-014-3216-x
Aims/hypothesis: The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT. Methods: Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18 months and 36 months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires. Conclusions/interpretation: DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes. © 2014 The Author(s).
BASE
This is the final version. Available on open access from Springer Verlag via the DOI in this record ; Data availability: Requests for access to IMI DIRECT data, including data presented here, can made to DIRECTdataaccess@Dundee.ac.uk. ; Aims/hypothesis: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control. ; European Union Horizon 2020 ; European Federation of Pharmaceutical Industries and Associations (EFPIA) ; Novo Nordisk Foundation ; MedImmune ; Medical Research Council (MRC)
BASE
AIMS/HYPOTHESIS: The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT. METHODS: Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18months and 36months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24h diet record, and food habit questionnaires. CONCLUSIONS/INTERPRETATION: DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes.
BASE
Background Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings A higher Tpred score was associated with healthier diets high in wholegrain (β=3.36 g, 95% CI 0.31, 6.40 and β=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (β=-75.53 kcal, 95% CI -144.71, -2.35 and β=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (β=-0.92 g, 95% CI -1.56, -0.28 and β=–0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (β=0.07 mmol/L, 95% CI 0.03, 0.1), (β=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (β=-0.1 mmol/L, 95% CI -0.2, -0.03), (β=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (β=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (β=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (β=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (β=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (β=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. Interpretation Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. Funding This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA companies.
BASE