Corrigendum: Time-Trends in Air Pollution Impact on Health in Italy, 1990–2019: An Analysis from the Global Burden of Disease Study 2019
In: International journal of public health, Band 69
ISSN: 1661-8564
5 Ergebnisse
Sortierung:
In: International journal of public health, Band 69
ISSN: 1661-8564
In: International journal of public health, Band 68
ISSN: 1661-8564
Objectives: We explored temporal variations in disease burden of ambient particulate matter 2.5 μm or less in diameter (PM2.5) and ozone in Italy using estimates from the Global Burden of Disease Study 2019.Methods: We compared temporal changes and percent variations (95% Uncertainty Intervals [95% UI]) in rates of disability adjusted life years (DALYs), years of life lost, years lived with disability and mortality from 1990 to 2019, and variations in pollutant-attributable burden with those in the overall burden of each PM2.5- and ozone-related disease.Results: In 2019, 467,000 DALYs (95% UI: 371,000, 570,000) were attributable to PM2.5 and 39,600 (95% UI: 18,300, 61,500) to ozone. The crude DALY rate attributable to PM2.5 decreased by 47.9% (95% UI: 10.3, 65.4) from 1990 to 2019. For ozone, it declined by 37.0% (95% UI: 28.9, 44.5) during 1990–2010, but it increased by 44.8% (95% UI: 35.5, 56.3) during 2010–2019. Age-standardized rates declined more than crude ones.Conclusion: In Italy, the burden of ambient PM2.5 (but not of ozone) significantly decreased, even in concurrence with population ageing. Results suggest a positive impact of air quality regulations, fostering further regulatory efforts.
Through a comprehensive analysis of Italy's estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we aimed to understand the patterns of health loss and response of the health-care system, and offer evidence-based policy indications in light of the demographic transition and government health spending in the country.
BASE
Publisher's version (útgefin grein) ; Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990-2010 time period, with the greatest annualised rate of decline occurring in the 0-9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10-24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10-24 years were also in the top ten in the 25-49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50-74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation; the University of Melbourne; Queensland Department of Health, Australia; the National Health and Medical Research Council, Australia; Public Health England; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; the Cardiovascular Medical Research and Education Fund; the National Institute on Ageing of the National Institutes of Health (award P30AG047845); and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated, the National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health and Social Care, or Public Health England; the United States Agency for International Development (USAID), the US Government, or MEASURE Evaluation; or the European Centre for Disease Prevention and Control (ECDC). This research used data from the Chile National Health Survey 2003, 2009-10, and 2016-17. The authors are grateful to the Ministry of Health, the survey copyright owner, for allowing them to have the database. All results of the study are those of the authors and in no way committed to the Ministry. The Costa Rican Longevity and Healthy Aging Study project is a longitudinal study by the University of Costa Rica's Centro Centroamericano de Poblacion and Instituto de Investigaciones en Salud, in collaboration with the University of California at Berkeley. The original pre-1945 cohort was funded by the Wellcome Trust (grant 072406), and the 1945-55 Retirement Cohort was funded by the US National Institute on Aging (grant R01AG031716). The principal investigators are Luis Rosero-Bixby and William H Dow and co-principal investigators are Xinia Fernandez and Gilbert Brenes. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. The Health Behaviour in School-Aged Children (HBSC) study is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997-98, 2001-02, 2005-06, and 2009-10 surveys was Candace Currie and the databank manager for the 1997-98 survey was Bente Wold, whereas for the following surveys Oddrun Samdal was the databank manager. A list of principal investigators in each country can be found on the HBSC website. Data used in this paper come from the 2009-10 Ghana Socioeconomic Panel Study Survey, which is a nationally representative survey of more than 5000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana and the Economic Growth Centre (EGC) at Yale University. It was funded by EGC. ISSER and the EGC are not responsible for the estimations reported by the analysts. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license number SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law, 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. Data for this research was provided by MEASURE Evaluation, funded by USAID. The authors thank the Russia Longitudinal Monitoring Survey, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology, Russia Academy of Sciences for making data available. This paper uses data from the Bhutan 2014 STEPS survey, implemented by the Ministry of Health with the support of WHO; the Kuwait 2006 and 2014 STEPS surveys, implemented by the Ministry of Health with the support of WHO; the Libya 2009 STEPS survey, implemented by the Secretariat of Health and Environment with the support of WHO; the Malawi 2009 STEPS survey, implemented by Ministry of Health with the support of WHO; and the Moldova 2013 STEPS survey, implemented by the Ministry of Health, the National Bureau of Statistics, and the National Center of Public Health with the support of WHO. This paper uses data from Survey of Health, Ageing and Retirement in Europe (SHARE) Waves 1 (DOI:10.6103/SHARE. w1.700), 2 (10.6103/SHARE.w2.700), 3 (10.6103/SHARE.w3.700), 4 (10.6103/SHARE.w4.700), 5 (10.6103/SHARE.w5.700), 6 (10.6103/SHARE.w6.700), and 7 (10.6103/SHARE.w7.700); see Borsch-Supan and colleagues (2013) for methodological details. The SHARE data collection has been funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N degrees 211909, SHARE-LEAP: GA N degrees 227822, SHARE M4: GA N degrees 261982) and Horizon 2020 (SHARE-DEV3: GA N degrees 676536, SERISS: GA N degrees 654221) and by DG Employment, Social Affairs & Inclusion. Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C), and from various national funding sources is gratefully acknowledged. This study has been realised using the data collected by the Swiss Household Panel, which is based at the Swiss Centre of Expertise in the Social Sciences. The project is financed by the Swiss National Science Foundation. The United States Aging, Demographics, and Memory Study is a supplement to the Health and Retirement Study (HRS), which is sponsored by the National Institute of Aging (grant number NIA U01AG009740). It was conducted jointly by Duke University and the University of Michigan. The HRS is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. This paper uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website. No direct support was received from grant P01-HD31921 for this analysis. The data reported here have been supplied by the United States Renal Data System. The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. Collection of data for the Mozambique National Survey on the Causes of Death 2007-08 was made possible by USAID under the terms of cooperative agreement GPO-A-00-08-000_D3-00. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study IVI conducted. L G Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Brazil; finance code 001) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, a Brazilian funding agency). I N Ackerman was supported by a Victorian Health and Medical Research Fellowship awarded by the Victorian Government. O O Adetokunboh acknowledges the South African Department of Science and Innovation and the National Research Foundation. A Agrawal acknowledges the Wellcome Trust DBT India Alliance Senior Fellowship. S M Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. M Ausloos, C Herteliu, and A Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. A Badawi is supported by the Public Health Agency of Canada. D A Bennett was supported by the NIHR Oxford Biomedical Research Centre. R Bourne acknowledges the Brien Holden Vision Institute, University of Heidelberg, Sightsavers, Fred Hollows Foundation, and Thea Foundation. G B Britton and I Moreno Velasquez were supported by the Sistema Nacional de Investigacion, SNI-SENACYT, Panama. R Buchbinder was supported by an Australian National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship. J J Carrero was supported by the Swedish Research Council (2019-01059). F Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. A R Chang was supported by National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grant K23 DK106515. V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundacao para a Ciencia e Tecnologia, IP, under the Norma Transitaria DL57/2016/CP1334/CT0006. A Douiri acknowledges support and funding from the National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care South London at King's College Hospital NHS Foundation Trust and the Royal College of Physicians, and support from the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. B B Duncan acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. H E Erskine is the recipient of an Australian NHMRC Early Career Fellowship grant (APP1137969). A J Ferrari was supported by a NHMRC Early Career Fellowship grant (APP1121516). H E Erskine and A J Ferrari are employed by and A M Mantilla-Herrera and D F Santomauro affiliated with the Queensland Centre for Mental Health Research, which receives core funding from the Queensland Department of Health. M L Ferreira holds an NHMRC Research Fellowship. C Flohr was supported by the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust. M Freitas acknowledges financial support from the EU (European Regional Development Fund [FEDER] funds through COMPETE POCI-01-0145-FEDER-029248) and National Funds (Fundacao para a Ciencia e Tecnologia) through project PTDC/NAN-MAT/29248/2017. A L S Guimaraes acknowledges support from CNPq. C Herteliu was partially supported by a grant co-funded by FEDER through Operational Competitiveness Program (project ID P_40_382). P Hoogar acknowledges Centre for Bio Cultural Studies, Directorate of Research, Manipal Academy of Higher Education and Centre for Holistic Development and Research, Kalaghatagi. F N Hugo acknowledges the Visiting Professorship, PRINT Program, CAPES Foundation, Brazil. B-F Hwang was supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. S M S Islam was funded by a National Heart Foundation Senior Research Fellowship and supported by Deakin University. R Q Ivers was supported by a research fellowship from the National Health and Medical Research Council of Australia. M Jakovljevic acknowledges the Serbian part of this GBD-related contribution was co-funded through Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. P Jeemon was supported by a Clinical and Public Health intermediate fellowship (grant number IA/CPHI/14/1/501497) from the Wellcome Trust-Department of Biotechnology, India Alliance (2015-20). O John is a recipient of UIPA scholarship from University of New South Wales, Sydney. S V Katikireddi acknowledges funding from a NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_12017/13, MC_UU_12017/15), and the Scottish Government Chief Scientist Office (SPHSU13, SPHSU15). C Kieling is a CNPq researcher and a UK Academy of Medical Sciences Newton Advanced Fellow. Y J Kim was supported by Research Management Office, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/00010). K Krishan is supported by UGC Centre of Advanced Study awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar was supported by K43 TW 010716 FIC/NIMH. B Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. J V Lazarus was supported by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III [ISCIII]/ESF, the EU [CP18/00074]). K J Looker thanks the NIHR Health Protection Research Unit in Evaluation of Interventions at the University of Bristol, in partnership with Public Health England, for research support. S Lorkowski was funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1808A). R A Lyons is supported by Health Data Research UK (HDR-9006), which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, NIHR (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation, and Wellcome Trust. J J McGrath is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the Queensland Health Department (via West Moreton HHS). P T N Memiah acknowledges support from CODESRIA. U O Mueller gratefully acknowledges funding by the German National Cohort Study BMBF grant number 01ER1801D. S Nomura acknowledges the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). A Ortiz was supported by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. S B Patten was supported by the Cuthbertson & Fischer Chair in Pediatric Mental Health at the University of Calgary. G C Patton was supported by an aNHMRC Senior Principal Research Fellowship. M R Phillips was supported in part by the National Natural Science Foundation of China (NSFC, number 81371502 and 81761128031). A Raggi, D Sattin, and S Schiavolin were supported by grants from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4-Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). P Rathi and B Unnikrishnan acknowledge Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal. A L P Ribeiro was supported by Brazilian National Research Council, CNPq, and the Minas Gerais State Research Agency, FAPEMIG. D C Ribeiro was supported by The Sir Charles Hercus Health Research Fellowship (#18/111) Health Research Council of New Zealand. D Ribeiro acknowledges financial support from the EU (FEDER funds through the Operational Competitiveness Program; POCI-01-0145-FEDER-029253). P S Sachdev acknowledges funding from the NHMRC of Australia Program Grant. A M Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. M M Santric-Milicevic acknowledges the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 175087). R Sarmiento-Suarez received institutional support from Applied and Environmental Sciences University (Bogota, Colombia) and ISCIII (Madrid, Spain). A E Schutte received support from the South African National Research Foundation SARChI Initiative (GUN 86895) and Medical Research Council. S T S Skou is currently funded by a grant from Region Zealand (Exercise First) and a grant from the European Research Council under the EU's Horizon 2020 research and innovation program (grant agreement number 801790). J B Soriano is funded by Centro de Investigacion en Red de Enfermedades Respiratorias, ISCIII. R Tabares-Seisdedos was supported in part by the national grant PI17/00719 from ISCIII-FEDER. N Taveira was partially supported by the European & Developing Countries Clinical Trials Partnership, the EU (LIFE project, reference RIA2016MC-1615). S Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral programme (reference number CD15/00019 from ISCIII-FEDER). S B Zaman received a scholarship from the Australian Government research training programme in support of his academic career. ; "Peer Reviewed"
BASE
The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the United States Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with licence no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law-2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. ; Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation, the University of Melbourne, Public Health England, the Norwegian Institute of Public Health, St. Jude Children's Research Hospital, the National Institute on Aging of the National Institutes of Health (award P30AG047845), and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). ; Peer reviewed
BASE