Coastal karren features in temperate microtidal settings: spatial organization and temporal evolution
In: Studia Universitatis Babeş-Bolyai. Geologia, Band 55, Heft 1, S. 37-44
ISSN: 1937-8602
2 Ergebnisse
Sortierung:
In: Studia Universitatis Babeş-Bolyai. Geologia, Band 55, Heft 1, S. 37-44
ISSN: 1937-8602
Abstract Background Metacrangonyctidae (Amphipoda, Crustacea) is an enigmatic continental subterranean water family of marine origin (thalassoid). One of the species in the genus, Metacrangonyx longipes, is endemic to the Balearic islands of Mallorca and Menorca (W Mediterranean). It has been suggested that the origin and distribution of thalassoid crustaceans could be explained by one of two alternative hypotheses: (1) active colonization of inland freshwater aquifers by a marine ancestor, followed by an adaptative shift; or (2) passive colonization by stranding of ancestral marine populations in coastal aquifers during marine regressions. A comparison of phylogenies, phylogeographic patterns and age estimations of clades should discriminate in favour of one of these two proposals. Results Phylogenetic relationships within M. longipes based on three mitochondrial DNA (mtDNA) and one nuclear marker revealed five genetically divergent and geographically structured clades. Analyses of cytochrome oxidase subunit 1 (cox1) mtDNA data showed the occurrence of a high geographic population subdivision in both islands, with current gene flow occurring exclusively between sites located in close proximity. Molecular-clock estimations dated the origin of M. longipes previous to about 6 Ma, whereas major cladogenetic events within the species took place between 4.2 and 2.0 Ma. Conclusions M. longipes displayed a surprisingly old and highly fragmented population structure, with major episodes of cladogenesis within the species roughly correlating with some of the major marine transgression-regression episodes that affected the region during the last 6 Ma. Eustatic changes (vicariant events) -not active range expansion of marine littoral ancestors colonizing desalinated habitats-explain the phylogeographic pattern observed in M. longipes. ; Research has been supported by Spanish grants CGL2006-01365, CGL2009-08256 and CGL2010-18616 of the Spanish Ministry of Science and Innovation and European Union FEDER funds. MMRB benefited from a FPI fellowship from the Spanish Ministry of Science and Innovation. ; Peer Reviewed
BASE