Il volume raccoglie un insieme di saggi relativi alla dimensione politica dei poteri signorili nelle campagne italiane nel tardo medioevo. La ricerca è condotta su ambiti territoriali molto diversi, ma ruota attorno ad alcune domande comuni, con una specifica attenzione alle relazioni politiche tra i signori, alle forme del loro coordinamento nei quadri degli stati regionali e alle dinamiche relative al controllo e sottomissione dei sudditi.
We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than similar to 2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of themeasured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 x 10(-26) for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 x 10(-8) for J2124-3358. ; Australian Research Council ; Council of Scientific and Industrial Research of India ; Istituto Nazionale di Fisica Nucleare of Italy ; Spanish Ministerio de Educacion y Ciencia ; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears ; Netherlands Organisation for Scientific Research ; Royal Society ; Scottish Funding Council ; Polish Ministry of Science and Higher Education ; Foundation for Polish Science ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; Natural Sciences and Engineering Research Council of Canada ; Commonwealth Government ; Astronomy
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck-Society (MPS) ; State of Niedersachsen/Germany ; Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears ; Foundation for Fundamental Research on Matter - Netherlands Organization for Scientific Research ; Polish Ministry of Science and Higher Education ; FOCUS Programme of Foundation for Polish Science ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/L000911/1 Gravitational Waves ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000911/1 ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/I006277/1 ; Science and Technology Facilities Council: ST/H002359/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/K00137X/1 ; Science and Technology Facilities Council: ST/M006735/1 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target ' s parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering. -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 x 10(-25) on intrinsic strain, 2 x 10(-7) on fiducial ellipticity, and 4 x 10(-5) on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck-Society (MPS) ; State of Niedersachsen/Germany ; Italian Istituto Nazionale di Fisica Nucleare (INFN) ; French Centre National de la Recherche Scientifique (CNRS) ; Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears ; Netherlands Organisation for Scientific Research ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; Natural Science and Engineering Research Council, Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/N000064/1 ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 x 10(-5) and 9.4 x 10(-4) Mpc(-3) yr(-1) at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
Advanced LIGO ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Australian Research Council ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; FOCUS Programme of Foundation for Polish Science ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Research Corporation, Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/N00003X/1 ; We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg(2) to 20 deg(2) will require at least three detectors of sensitivity within a factor of similar to 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science and Engineering Research Board, India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat ; Cultura i Universitats of the Govern de les Illes Balears ; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund ; Lyon Institute of Origins ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; Conselleria d'Educacio ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/N000064/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 x 10(-10) and +1.5 x 10(-11) Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the Frequency Hough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the Frequency Hough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10(-24) and 2 x 10(-23) at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of similar to 2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; MaxPlanck- Society (MPS) ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science AMP; Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea, Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Leverhulme Trust ; Research Corporation, Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; State of Niedersachsen/Germany: GEO600 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/M006735/1 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/J000019/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/G504284/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/L000946/1 ; The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (greater than or similar to 25M(circle dot)) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (greater than or similar to 1 Gpc(-3) yr(-1)) from both types of formation models. The low measured redshift (z similar or equal to 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Austrian de la Recherche Scientifique ; Fonds voor Wetenschappelijk Onderzoek ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; Bulgarian Ministry of Education and Science ; CERN ; Chinese Academy of Sciences ; Ministry of Science and Technology ; National Natural Science Foundation of China ; Colombian Funding Agency (COLCIENCIAS) ; Croatian Ministry of Science, Education and Sport ; Research Promotion Foundation, Cyprus ; Ministry of Education and Research ; European Regional Development Fund, Estonia ; Academy of Finland ; Finnish Ministry of Education and Culture ; Helsinki Institute of Physics ; Institut National de Physique Nucleaire et de Physique des Particules / CNRS ; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France ; Bundesministerium fur Bildung und Forschung ; Deutsche Forschungsgemeinschaft ; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany ; General Secretariat for Research and Technology, Greece ; National Scientific Research Foundation ; National Office for Research and Technology, Hungary ; Department of Atomic Energy ; Department of Science and Technology, India ; Institute for Studies in Theoretical Physics and Mathematics, Iran ; Science Foundation, Ireland ; Istituto Nazionale di Fisica Nucleare, Italy ; Korean Ministry of Education, Science and Technology ; World Class University program of NRF, Republic of Korea ; Lithuanian Academy of Sciences ; CINVESTAV ; CONACYT ; SEP ; UASLP-FAI ; Ministry of Business, Innovation and Employment, New Zealand ; Pakistan Atomic Energy Commission ; Ministry of Science and Higher Education ; National Science Centre, Poland ; Fundacao para a Ciencia e a Tecnologia, Portugal ; JINR, Dubna ; Ministry of Education and Science of the Russian Federation ; Federal Agency of Atomic Energy of the Russian Federation ; Russian Academy of Sciences ; Russian Foundation for Basic Research ; Ministry of Education, Science and Technological Development of Serbia ; Secretaria de Estado de Investigacion, Desarrollo e Innovacion ; Programa Consolider-Ingenio, Spain ; ETH Board ; ETH Zurich ; PSI ; SNF ; UniZH ; Canton Zurich ; SER ; National Science Council, Taipei ; Thailand Center of Excellence in Physics ; Institute for the Promotion of Teaching Science and Technology of Thailand ; Special Task Force for Activating Research ; National Science and Technology Development Agency of Thailand ; Scientific and Technical Research Council of Turkey ; Turkish Atomic Energy Authority ; Science and Technology Facilities Council, U.K. ; US Department of Energy ; US National Science Foundation ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of Czech Republic ; Council of Science and Industrial Research, India ; Compagnia di San Paolo (Torino) ; HOMING PLUS programme of Foundation for Polish Science ; EU, Regional Development Fund ; Thalis and Aristeia programmes ; EU-ESF ; Greek NSRF ; Ministry of Education and ResearchSF0690030s09 ; A measurement of the Z gamma -> nu(nu) over bar gamma cross section in pp collisions at root s = 7 TeV is presented, using data corresponding to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. This measurement is based on the observation of events with an imbalance of transverse energy in excess of 130 GeV and a single photon in the absolute pseudorapidity range vertical bar eta vertical bar nugamma production cross section is measured to be 21.1 +/- 4.2(stat.)+/- 4.3(syst.)+/- 0.5(lum.)fb, which agrees with the standard model prediction of 21.9 +/- 1.1 fb. The results are combined with the CMS measurement of Z gamma production in the l(+)l(-)gamma final state (where l is an electron or a muon) to yield the most stringent limits to date on triple gauge boson couplings. vertical bar h(3)(Z)vertical bar < 2.7 x 10(-3), vertical bar h(4)(Z)vertical bar < 1.3 x 10(-5) for ZZ gamma and vertical bar h(3)(gamma)vertical bar < 2.9 x 10(-3), vertical bar h(4)(gamma)vertical bar < 1.5 x 10(-5) for Z gamma gamma couplings.
BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN (China) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; Marie-Curie programme (European Union) ; European Research Council (European Union) ; EPLANET (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS programme of the Foundation for Polish Science ; Regional Development Fund ; National Science Center (Poland) ; Thalis programme - EU-ESF ; National Priorities Research Program by Qatar National Research Fund ; Programa Clarin-COFUND del Principado de Asturias ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; European Union ; Mobility Plus programme of the Ministry of Science and Higher Education ; Thalis programme - Greek NSRF ; Aristeia programme - EU-ESF ; Aristeia programme - Greek NSRF ; Science and Technology Facilities Council ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2013/11/B/ST2/04202 ; National Science Center (Poland): 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Welch Foundation: C-1845 ; Science and Technology Facilities Council: ST/K001256/1 ; Science and Technology Facilities Council: ST/N000250/1 ; Science and Technology Facilities Council: CMS ; Science and Technology Facilities Council: GRIDPP ; The WZ production cross section in proton-proton collisions at root s = 13 Tev is measured with the CMS experiment at the LHC using a data sample corresponding to an integrated luminosity of 2.3 fb(-1). The measurement is performed in the leptonic decay modes WZ -> lVl'l', where l,l'=e,mu. The measured cross section for the range 60 WZ) = 39.9 +/- 3.2(stat)(2.9)(-3.1)(syst)+/- 0.4(theo)+/- 1.3(lumi)pb, consistent with the standard model prediction.
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck Society ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Commission ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Canadian Institute for Advanced Research ; Brazilian Ministry of Science, Technology, and Innovation ; Russian Foundation for Basic Research ; Leverhulme Trust ; Research Corporation ; Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Australian Government ; National Collaborative Research Infrastructure Strategy ; Government of Western Australia ; United States Department of Energy ; United States National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under European Union's Seventh Framework Programme ; ERC ; NASA (United States) ; DOE (United States) ; IN2P3/CNRS (France) ; CEA/Irfu (France) ; ASI (Italy) ; INFN (Italy) ; MEXT (Japan) ; KEK (Japan) ; JAXA (Japan) ; Wallenberg Foundation ; Swedish Research Council ; National Space Board (Sweden) ; NASA in the United States ; DRL in Germany ; INAF for the project Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments ; ESA (Denmark) ; ESA (France) ; ESA (Germany) ; ESA (Italy) ; ESA (Switzerland) ; ESA (Spain) ; German INTEGRAL through DLR grant ; US under NASA Grant ; National Science Foundation PIRE program grant ; Hubble Fellowship ; KAKENHI of MEXT Japan ; JSPS ; Optical and Near-Infrared Astronomy Inter-University Cooperation Program - MEXT ; UK Science and Technology Facilities Council ; ERC Advanced Investigator Grant ; Lomonosov Moscow State University Development programm ; Moscow Union OPTICA ; Russian Science Foundation ; National Research Foundation of South Africa ; Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS) ; NVIDIA at Harvard University ; University of Hawaii ; National Aeronautics and Space Administration's Planetary Defense Office ; Queen's University Belfast ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate ; European Research Council under European Union's Seventh Framework Programme/ERC ; STFC grants ; European Union FP7 programme through ERC ; STFC through an Ernest Rutherford Fellowship ; FONDECYT ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; NASA in the US ; UK Space Agency in the UK ; Agenzia Spaziale Italiana (ASI) in Italy ; Ministerio de Ciencia y Tecnologia (MinCyT) ; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina ; USA NSF PHYS ; NSF ; ICREA ; Science and Technology Facilities Council ; UK Space Agency ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1238877 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; German INTEGRAL through DLR grant: 50 OG 1101 ; US under NASA Grant: NNX15AU74G ; National Science Foundation PIRE program grant: 1545949 ; Hubble Fellowship: HST-HF-51325.01 ; KAKENHI of MEXT Japan: 24103003 ; KAKENHI of MEXT Japan: 15H00774 ; KAKENHI of MEXT Japan: 15H00788 ; JSPS: 15H02069 ; JSPS: 15H02075 ; ERC Advanced Investigator Grant: 267697 ; Russian Science Foundation: 16-12-00085 ; Russian Science Foundation: RFBR15-02-07875 ; National Aeronautics and Space Administration's Planetary Defense Office: NNX14AM74G ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate: NNX08AR22G ; European Research Council under European Union's Seventh Framework Programme/ERC: 291222 ; STFC grants: ST/I001123/1 ; STFC grants: ST/L000709/1 ; European Union FP7 programme through ERC: 320360 ; FONDECYT: 3140326 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; USA NSF PHYS: 1156600 ; NSF: 1242090 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/N000668/1 ; Science and Technology Facilities Council: ST/M000966/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000709/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/K00090X/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/H001972/1 ; Science and Technology Facilities Council: ST/L000733/1 ; Science and Technology Facilities Council: ST/N000757/1 ; Science and Technology Facilities Council: ST/M001334/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/M003035/1 ; Science and Technology Facilities Council: ST/I001123/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/L003465/1 ; UK Space Agency: ST/P002196/1 ; This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
FMSR (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN (China) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; RPF (Cyprus) ; Academy of Sciences and NICPB (Estonia) ; Academy of Finland, ME, and HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NKTH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; NRF (Korea) ; LAS (Lithuania) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; PAEC (Pakistan) ; SCSR (Poland) ; FCT (Portugal) ; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan) ; MST (Russia) ; MAE (Russia) ; MSTDS (Serbia) ; MICINN ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; NSC (Taipei) ; TUBITAK ; TAEK (Turkey) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; European Union ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.
Austrian Federal Ministry of Education, Science and Research ; Austrian Science Fund ; Belgian Fonds de la Recherche Scientifique ; Fonds voor Wetenschappelijk Onderzoek ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FAPERGS ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; Bulgarian Ministry of Education and Science ; CERN ; Chinese Academy of Sciences ; Ministry of Science and Technology ; National Natural Science Foundation of China ; Colombian Funding Agency (COLCIENCIAS) ; Croatian Ministry of Science, Education and Sport ; Croatian Science Foundation ; Research Promotion Foundation, Cyprus ; Secretariat for Higher Education, Science, Technology and Innovation, Ecuador ; Ministry of Education and Research, Estonia ; Estonian Research Council, Estonia ; European Regional Development Fund, Estonia ; Academy of Finland ; Finnish Ministry of Education and Culture ; Helsinki Institute of Physics ; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France ; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France ; Bundesministerium fur Bildung und Forschung, Germany ; Deutsche Forschungsgemeinschaft, Germany ; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany ; General Secretariat for Research and Technology, Greece ; National Research, Development and Innovation Fund, Hungary ; Department of Atomic Energy, India ; Department of Science and Technology, India ; Institute for Studies in Theoretical Physics and Mathematics, Iran ; Science Foundation, Ireland ; Istituto Nazionale di Fisica Nucleare, Italy ; Ministry of Science, ICT and Future Planning, Republic of Korea ; National Research Foundation (NRF), Republic of Korea ; Ministry of Education and Science of the Republic of Latvia ; Lithuanian Academy of Sciences ; Ministry of Education ; University of Malaya (Malaysia) ; Ministry of Science of Montenegro ; BUAP ; CINVESTAV ; CONACYT ; LNS ; SEP ; UASLP-FAI ; Ministry of Business, Innovation and Employment, New Zealand ; Pakistan Atomic Energy Commission ; Ministry of Science and Higher Education, Poland ; National Science Center, Poland ; Fundacao para a Ciencia e a Tecnologia, Portugal ; JINR, Dubna ; Ministry of Education and Science of the Russian Federation ; Federal Agency of Atomic Energy of the Russian Federation ; Russian Academy of Sciences ; Russian Foundation for Basic Research ; National Research Center Kurchatov Institute ; Ministry of Education, Science and Technological Development of Serbia ; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio 2010, Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2013-2016, Plan de Ciencia, Tecnologia e Innovacion 2013-2017 del Principado de Asturias, S ; Fondo Europeo de Desarrollo Regional, Spain ; Ministry of Science, Technology and Research, Sri Lanka ; ETH Board ; PSI ; SNF ; UniZH ; Canton Zurich ; SER ; Ministry of Science and Technology, Taipei ; Thailand Center of Excellence in Physics ; Institute for the Promotion of Teaching Science and Technology of Thailand ; Special Task Force for Activating Research ; National Science and Technology Development Agency of Thailand ; Scientific and Technical Research Council of Turkey ; Turkish Atomic Energy Authority ; National Academy of Sciences of Ukraine, Ukraine ; State Fund for Fundamental Researches, Ukraine ; Science and Technology Facilities Council, U.K. ; US Department of Energy ; US National Science Foundation ; Marie-Curie program (European Union) ; European Research Council (European Union) ; Horizon 2020 (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; F.R.S.-FNRS (Belgium) ; FWO (Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Hungarian Academy of Sciences (Hungary) ; New National Excellence Program UNKP (Hungary) ; NKFIA (Hungary) ; Council of Scientific and Industrial Research, India ; HOMING PLUS program of the Foundation for Polish Science ; European Union, Regional Development Fund ; Mobility Plus program of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Programa de Excelencia Maria de Maeztu ; Programa Severo Ochoa del Principado de Asturias ; Thalis program ; Aristeia program ; EU-ESF ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand) ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; Weston Havens Foundation (U.S.A.) ; Estonian Research Council, Estonia: IUT23-4 ; Estonian Research Council, Estonia: IUT23-6 ; Horizon 2020 (European Union): 675440 ; FWO (Belgium): 30820817 ; NKFIA (Hungary): 123842 ; NKFIA (Hungary): 123959 ; NKFIA (Hungary): 124845 ; NKFIA (Hungary): 124850 ; NKFIA (Hungary): 125105 ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): 2015/19/B/ST2/02861 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Welch Foundation: C-1845 ; An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).
FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN (China) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; RAEP (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; PCTI (Spain) ; FEDER (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; Marie-Curie program ; European Research Council and Horizon Grant (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS program of the Foundation for Polish Science ; European Union ; Regional Development Fund (Poland) ; Mobility Plus program of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Program a Clarin-COFUND del Principado de Asturias ; Thalis and Aristeia programs ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship ; Chulalongkorn University ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; Weston Havens Foundation (USA) ; TUBITAK (Turkey) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; EU-ESF ; BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; European Research Council and Horizon Grant (European Union): 675440 ; National Science Center (Poland): 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): 2015/19/B/ST2/02861 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Welch Foundation: C-1845 ; Results are reported from a search for new physics in 13 TeV proton-proton collisions in the final state with large missing transverse momentum and two Higgs bosons decaying via H -> b(b)over bar. The search uses a data sample accumulated by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb(-1). The search is motivated by models based on gauge-mediated supersymmetry breaking, which predict the electroweak production of a pair of Higgsinos, each of which can decay via a cascade process to a Higgs boson and an undetected lightest supersymmetric particle. The observed event yields in the signal regions are consistent with the standard model background expectation obtained from control regions in data. Higgsinos in the mass range 230-770 GeV are excluded at 95% confidence level in the context of a simplified model for the production and decay of approximately degenerate Higgsinos.
BMWFW ; FWF (Austria) ; FNRS ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN ; CAS ; MoST ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER ; ERC IUT ; ERDF (Estonia) ; Academy of Finland ; MEC ; HIP (Finland) ; CEA ; CNRS/IN2P3 (France) ; BMBF ; DFG ; HGF (Germany) ; GSRT (Greece) ; OTKA ; NIH (Hungary) ; DAE ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP ; NRF (Republic of Korea) ; LAS (Lithuania) ; MOE ; UM (Malaysia) ; BUAP ; CINVESTAV ; CONACYT ; LNS ; SEP ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON ; RosAtom ; RAS ; RFBR ; RAEP (Russia) ; MESTD (Serbia) ; SEIDI ; CPAN ; PCTI ; FEDER (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter ; IPST ; STAR ; NSTDA (Thailand) ; TUBITAK ; TAEK (Turkey) ; NASU ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE ; NSF (USA) ; Marie-Curie program ; European Research Council and Horizon 2020 Grant (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union ; Regional Development Fund ; Mobility Plus program of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Programa Clarin-COFUND del Principado de Asturias ; Thalis and Aristeia programs cofinanced by EU-ESF ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; European Research Council and Horizon 2020 Grant (European Union): 675440 ; Welch Foundation: C-1845 ; : Harmonia 2014/14/M/ST2/00428 ; : Opus 2014/13/B/ST2/02543 ; : 2014/15/B/ST2/03998 ; : 2015/19/B/ST2/02861 ; : Sonata-bis 2012/07/E/ST2/01406 ; The cross sections for the production of t (t) over bar b (b) over bar and t (t) over bar jj events and their ratio sigma(t (t) over bar b (b) over bar)/sigma(t (t) over bar jj) are measured using data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp collisions at root s = 13 TeV with the CMS detector at the LHC. Events with two leptons (e or mu) and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. In the full phase space, the measured ratio is 0.022 +/- 0.003 (stat) +/- 0.006 (syst), the cross section sigma(t (t) over bar b (b) over bar) bis 4.0 +/- 0.6 (stat)+/- 1.3 (syst) pb and sigma(t (t) over bar jj) is 184 +/- 6 (stat)+/- 33 (syst) pb. The measurements are compared with the standard model expectations obtained from a POWHEG simulation at next-to-leading-order interfaced with PYTHIA. (c) 2017 The Author. Published by Elsevier B.V.