We present a social network and forensic analysis of the vote counts of Spanish national elections that took place in December 2015 and their sequel in June 2016. We initially consider the phenomenon of bipartisanship breakdown by analyzing spatial distributions of several bipartisanship indices. We find that such breakdown is more prominently close to cosmopolite and largely populated areas and less important in rural areas where bipartisanship still prevails, and its evolution mildly consolidates in the 2016 round, with some evidence of bipartisanship reinforcement which we hypothesize to be due to psychological mechanisms of risk aversion. Subsequently, a functional network analysis detects an effective partition of municipalities which remarkably coincides with the first-level political and administrative division of autonomous communities. Finally, we explore to which extent vote data are faithful by applying forensic techniques to vote statistics. Results based on deviation from Benford's law are mixed and vary across different levels of aggregation. As a complementary metric, we further explore the cooccurring statistics of vote share and turnout, finding a mild tendency in the clusters of the conservative party to smear out towards the area of high turnout and vote share, what has been previously interpreted as a possible sign of incremental fraud. ; Lucas Lacasa acknowledges funding from EPSRC Early Career Fellowship EP/P01660X/1. ; Peer reviewed
ArXiv Number: 1102.3118.- PACS numbers: 89.75.-k, 05.10.-a, 87.23.G ; We introduce a general methodology of update rules accounting for arbitrary interevent time distributions in simulations of interacting agents. In particular we consider update rules that depend on the state of the agent, so that the update becomes part of the dynamical model. As an illustration we consider the voter model in fully-connected, random and scale free networks with an update probability inversely proportional to the persistence, that is, the time since the last event. We find that in the thermodynamic limit, at variance with standard updates, the system orders slowly. The approach to the absorbing state is characterized by a power law decay of the density of interfaces, observing that the mean time to reach the absorbing state might be not well defined. ; We acknowledge nancial support from MICINN(Spain) through project FISICOS (FIS2007- 60327). J.F.-G. aknowledges a predoctoral fellowship form the Government of the Balearic Islands. ; Peer reviewed
In: in Social Computing, Behavioral-Cultural Modeling, and Prediction, Agarwal, N.; Xu, K. & Osgood, N. (Eds.) pp. 173-181 (Springer International Publishing, 2015).
Trabajo presentado en la Conference on Complex Systems (CCS), celenbrada en Lyon del 25 al 29 de octubre de 2021. ; The vulnerability of democratic processes is under scrutiny after scandals related to Cambrige Analytica (2016 U.S. elections, the Brexit referendum, and elections in Kenya [1]). The deceptive use of social media in the US, the European Union and several Asian countries, increased social and political polarization across world regions. Finally, there are straightforward frauds like Crimea referendum and Belarus elections. These challenges are eroding democracy, the most frequent source of governmental power, and raise multiple questions about its vulnerabilities [2]. Democratic systems have countless ways of performing elections, which create different electoral systems (ES). It is therefore in citizens' interest to study and understand how different ESs relate to different vulnerabilities and contemporary challenges. These systems can be analyzed using network science in various layers – they involve a network of voters in the first place, a network of electoral districts connected by commuting flow for instance, or a network of political parties to give a few examples. The electoral system together with the underlying voting processes and opinion dynamics can be seen as a complex system [3]. We study electoral systems in a dynamical framework. We look at the volatility of the election results, analyzing how much they vary over time. However, the term volatility is frequently used in relation to the Pedersen index of volatility. In this meaning it has been studied and even linked to the party system instability [4, 5]. Our approach goes far beyond two-point volatility. We analyze the vulnerability of an ES based on a long run of opinion dynamics process with many elections performed during the evolution. In this context, we consider that a system is more vulnerable, if it has a larger variance of the election results and if it magnifies the influence of extremism and media. We can further identify which voting system is more sensitive to fluctuations, and which one is more vulnerable to internal/external influences, like zealots or propaganda. This allows us to construct a probability distribution of election results under every electoral system. It is essential to provide new tools and arguments to the discussion on the evaluation of electoral systems. We aim at comparing different ESs in a dynamical framework. Our novel approach of analyzing electoral systems in such way with all its aspects included, from opinion dynamics in the population of voters to inter-district commuting patterns to seat appointment methods, will help answering questions like: Which electoral systems are more predictable/stable under fluctuations? Which electoral systems are the most robust (or vulnerable) under external and internal influences? Which features of electoral systems make them more (less) stable?
J. F.-G. receives economic support from the Conselleria d'Educació, Cultura i Universitats of the Government of the Balearic Islands and the ESF. J. J. R. acknowledges funding from the Ramón y Cajal program of the Spanish Ministry of Economy (MINECO). Partial support was received from MINECO and FEDER through projects FIS2011-24785 and FIS2012-30634 and from the EU Commission through the FP7 projects EUNOIA and LASAGNE. ; Peer reviewed
Trabajo presentado en la Conference on Complex Systems (CCS), celenbrada en Lyon del 25 al 29 de octubre de 2021. ; Human activities and natural resources are coupled through biological, economical, political and social aspects. In particular, fishing is a complex activity due to the interaction of multiple factors. For example, there is an interplay between the specific interests of extracting industries and those of nations, having the right to regulate fishing within their Exclusive Economic Zones (EEZs). The problem of sustainable fishing becomes harder at the Areas Beyond National Jurisdiction (high seas), where the fishing stocks are shared resources and the regulation is weaker. We analyse one year of fishing vessels' trajectories, obtained from the Automatic Identification System (AIS), to understand how fishing is distributed at the high seas. We find an accumulation of fishing effort at the external borders of the most productive EEZs, hindering the sustainable fishing within those waters, such that 47% of the fishing effort in the high seas concentrates in a 200 km strip adjacent to the EEZ borders. To quantify this observation, we obtain 14 marine provinces from the trajectories of the vessels and link these provinces to the ports that give support to the vessels fishing on them. This leads to a global network where typically the ports are specialized on one or two provinces, and those located in low and middle-income countries have a key role, becoming potential candidates to receive rewards for control and catch verification tasks.
The Spanish government declared the lockdown on March 14th, 2020 to tackle the fast-spreading of COVID-19. As a consequence the Balearic Islands remained almost fully isolated due to the closing of airports and ports, These isolation measures and the home-based confinement have led to a low incidence of COVID-19 in this region. We propose a compartmental model for the spread of COVID-19 including five compartments (Susceptible, Latent, Infected, Diseased, and Recovered), and the mobility between municipalities. The model parameters are calibrated with the temporal series of confirmed cases provided by the Spanish Ministry of Health. After calibration, the proposed model captures the trend of the official confirmed cases before and after the lockdown. We show that the estimated number of cases depends strongly on the initial dates of the local outbreak onset and the number of imported cases before the lockdown. Our estimations indicate that the population has not reached the level of herd immunization necessary to prevent future outbreaks. While the low incidence, in comparison to mainland Spain, has prevented the saturation of the health system, this low incidence translates into low immunization rates, therefore facilitating the propagation of new outbreaks that could lead to secondary waves of COVID-19 in the region. These findings warn about scenarios regarding after-lockdown-policies and the risk of second outbreaks, emphasize the need for widespread testing, and could potentially be extrapolated to other insular and continental regions. ; V.M.E. and J.F.G. acknowledge funding from the Ministry of Science and Innovation (Spain) and FEDER through project SPASIMM [FIS2016-80067-P (AEI/FEDER, UE)]. JFG acknowledges funding through the postdoc program of the University of the Balearic Islands. ; No
The Spanish government declared the lockdown on March 14th, 2020 to tackle the fast-spreading of COVID-19. As a consequence, the Balearic Islands remained almost fully isolated due to the closing of airports and ports, these isolation measures and the home-based confinement have led to a low prevalence of COVID-19 in this region. We propose a compartmental model for the spread of COVID-19 including five compartments (Susceptible, Exposed, Presymptomatic Infective, Diseased, and Recovered), and the mobility between municipalities. The model parameters are calibrated with the temporal series of confirmed cases provided by the Spanish Ministry of Health. After calibration, the proposed model captures the trend of the official confirmed cases before and after the lockdown. We show that the estimated number of cases depends strongly on the initial dates of the local outbreak onset and the number of imported cases before the lockdown. Our estimations indicate that the population has not reached the level of herd immunization necessary to prevent future outbreaks. While the low prevalence, in comparison to mainland Spain, has prevented the saturation of the health system, this low prevalence translates into low immunization rates, therefore facilitating the propagation of new outbreaks that could lead to secondary waves of COVID-19 in the region. These findings warn about scenarios regarding after-lockdown-policies and the risk of second outbreaks, emphasize the need for widespread testing, and could potentially be extrapolated to other insular and continental regions. ; VE and JF-G acknowledge funding from the Ministry of Science and Innovation (Spain) and FEDER through project SPASIMM [FIS2016-80067-P (AEI/FEDER, UE)]. JF-G acknowledges funding from the Vicerrectorado de Investigación e Internacionalización of the University of the Balearic Islands and Campus de Excelencia Internacional CEI15-09 (Ministerio de Educación, Cultura y Deporte, Spain) through its talent attraction program. ; Peer reviewed
The race between pathogens and their hosts is a major evolutionary driver, where both reshuffle their genomes to overcome and reorganize the defenses for infection, respectively. Evolutionary theory helps formulate predictions on the future evolutionary dynamics of SARS-CoV-2, which can be monitored through unprecedented real-time tracking of SARS-CoV-2 population genomics at the global scale. Here we quantify the accelerating evolution of SARS-CoV-2 by tracking the SARS-CoV-2 mutation globally, with a focus on the Receptor Binding Domain (RBD) of the spike protein determining infection success. We estimate that the > 820 million people that had been infected by October 5, 2021, produced up to 1021 copies of the virus, with 12 new effective RBD variants appearing, on average, daily. Doubling of the number of RBD variants every 89 days, followed by selection of the most infective variants challenges our defenses and calls for a shift to anticipatory, rather than reactive tactics involving collaborative global sequencing and vaccination. ; This research was funded by King Abdullah University of Science and technology through research made available to the Computational BioScience Research Center, CMD and TG. TG. VME and JFG acknowledge funding from "la Caixa" Foundation under the project code SR20-00386 (COVID-SHINE). JFG was supported by Direcció General de Política Universitària i Recerca from the government of the Balearic Islands through the postdoctoral program Vicenç Mut. ; Peer reviewed
The race between pathogens and their hosts is a major evolutionary driver, where both reshuffle their genomes to overcome and reorganize the defenses for infection, respectively. Evolutionary theory helps formulate predictions on the future evolutionary dynamics of SARS-CoV-2, which can be monitored through unprecedented real-time tracking of SARS-CoV-2 population genomics at the global scale. Here we quantify the accelerating evolution of SARS-CoV-2 by tracking the SARS-CoV-2 mutation globally, with a focus on the Receptor Binding Domain (RBD) of the spike protein determining infection success. We estimate that the > 820 million people that had been infected by October 5, 2021, produced up to 1021 copies of the virus, with 12 new effective RBD variants appearing, on average, daily. Doubling of the number of RBD variants every 89 days, followed by selection of the most infective variants challenges our defenses and calls for a shift to anticipatory, rather than reactive tactics involving collaborative global sequencing and vaccination ; Funded by King Abdullah University of Science and technology through research made available to the Computational BioScience Research Center, CMD and TG. TG. VME and JFG acknowledge funding from "la Caixa" Foundation under the project code SR20-00386 (COVID-SHINE). JFG was supported by Direcció General de Política Universitària i Recerca from the government of the Balearic Islands through the postdoctoral program Vicenç Mut
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness. ; The Canada Research Chairs program provided funding for the core writing team. Field research funding was provided by A.G. Leventis Foundation; Agence Nationale de la Recherche, [grant number ANR-18-32–0010CE-01 (JCJC PEPPER)]; Agencia Estatal de Investigaci; Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), [grant number M1420-09-5369-FSE-000002]; Alan Peterson; ArcticNet; Arkadaşlar; Army Corp of Engineers; Artificial Reef Program; Australia's Integrated Marine Observing System (IMOS), National Collaborative; Research Infrastructure Strategy (NCRIS), University of Tasmania; Australian Institute of Marine Science; Australian Research Council, [grant number LP140100222]; Bai Xian Asia Institute; Batubay Özkan; BC Hydro Fish and Wildlife Compensation Program; Ben-Gurion University of the Negev; Bertarelli Foundation; Bertarelli Programme in Marine Science; Bilge Bahar; Bill and Melinda Gates Foundation; Biology Society of South Australia; Boston University; Burak Över; California State Assembly member Patrick O'Donnell; California State University Council on Ocean Affairs, Science & Technology; California State University Long Beach; Canada Foundation for Innovation (Major Science Initiative Fund and funding to Oceans Network Canada), [grant number MSI 30199 for ONC]; Cape Eleuthera Foundation; Centre National d'Etudes Spatiales; Centre National de la Recherche Scientifique; Charles Darwin Foundation, [grant number 2398]; Colombian Institute for the Development of Science and Technology (COLCIENCIAS), [grant number 811–2018]; Colombian Ministry of Environment and Sustainable Development, [grant number 0041–2020]; Columbia Basin Trust; Commission for Environmental Cooperation; Cornell Lab of Ornithology; Cultural practices and environmental certification of beaches, Universidad de la Costa, Colombia, [grant number INV.1106–01–002-15, 2020–21]; Department of Conservation New Zealand; Direction de l'Environnement de Polynésie Française; Disney Conservation Fund; DSI-NRF Centre of; Excellence at the FitzPatrick Institute of African Ornithology; Ecology Project International; Emin Özgür; Environment and Climate Change Canada; European Community: RTD programme - Species Support to Policies; European Community's Seventh Framework Programme; European Union; European Union's Horizon 2020 research and innovation programme, Marie Skłodowska-Curie, [grant number 798091, 794938]; Faruk Eczacıbaşı; Faruk Yalçın Zoo; Field research funding was provided by King Abdullah University of Science and Technology; Fish and Wildlife Compensation Program; Fisheries and Oceans Canada; Florida Fish and Wildlife Conservation Commission, [grant numbers FWC-12164, FWC-14026, FWC-19050]; Fondo Europeo de Desarrollo Regional; Fonds québécois de la recherche nature et technologies; Foundation Segré; Fundação para a Ciência e a Tecnologia (FCT Portugal); Galapagos National Park Directorate research, [grant number PC-41-20]; Gordon and Betty Moore Foundation, [grant number GBMF9881 and GBMF 8072]; Government of Tristan da Cunha; Habitat; Conservation Trust Foundation; Holsworth Wildlife Research Endowment; Institute of Biology of the Southern Seas, Sevastopol, Russia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Instituto Nacional de Pesquisas Espaciais (INPE), Brazil; Israeli Academy of Science's Adams Fellowship; King Family Trust; Labex, CORAIL, France; Liber Ero Fellowship; LIFE (European Union), [grant number LIFE16 NAT/BG/000874]; Mar'a de Maeztu Program for Units of Excellence in R&D; Ministry of Science and Innovation, FEDER, SPASIMM,; Spain, [grant number FIS2016–80067-P (AEI/FEDER, UE)]; MOE-Korea, [grant number 2020002990006]; Mohamed bin Zayed Species Conservation Fund; Montreal Space for Life; National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Program; National Geographic Society, [grant numbers NGS-82515R-20]; National Natural Science Fund of China; National Oceanic and Atmospheric Administration; National Parks Board, Singapore; National Science and Technology Major Project of China; National Science Foundation, [grant number DEB-1832016]; Natural Environment Research Council of the UK; Natural Sciences and Engineering Research Council of Canada (NSERC), Alliance COVID-19 grant program, [grant numbers ALLRP 550721–20, RGPIN-2014-06229 (year: 2014), RGPIN-2016-05772 (year: 2016)]; Neiser Foundation; Nekton Foundation; Network of Centre of Excellence of Canada: ArcticNet; North Family Foundation; Ocean Tracking Network; Ömer Külahçıoğlu; Oregon State University; Parks Canada Agency (Lake Louise, Yoho, and Kootenay Field Unit); Pew Charitable Trusts; Porsim Kanaf partnership; President's International Fellowship Initiative for postdoctoral researchers Chinese Academy of Sciences, [grant number 2019 PB0143]; Red Sea Research Center; Regional Government of the Azores, [grant number M3.1a/F/025/2015]; Regione Toscana; Rotary Club of Rhinebeck; Save our Seas Foundation; Science & Technology (CSU COAST); Science City Davos, Naturforschende Gesellschaft Davos; Seha İşmen; Sentinelle Nord program from the Canada First Research Excellence Fund; Servizio Foreste e Fauna (Provincia Autonoma di Trento); Sigrid Rausing Trust; Simon Fraser University; Sitka Foundation; Sivil Toplum Geliştirme Merkezi Derneği; South African National Parks (SANParks); South Australian Department for Environment and Water; Southern California Tuna Club (SCTC); Spanish Ministry for the Ecological Transition and the Demographic Challenge; Spanish Ministry of Economy and Competitiveness; Spanish Ministry of Science and Innovation; State of California; Sternlicht Family Foundation; Suna Reyent; Sunshine Coast Regional Council; Tarea Vida, CEMZOC, Universidad de Oriente, Cuba, [grant number 10523, 2020]; Teck Coal; The Hamilton Waterfront Trust; The Ian Potter Foundation, Coastwest, Western Australian State NRM; The Red Sea Development Company; The Wanderlust Fund; The Whitley Fund; Trans-Anatolian Natural Gas Pipeline; Tula Foundation (Hakai Institute); University of Arizona; University of Pisa; US Fish and Wildlife Service; US Geological Survey; Valencian Regional Government; Vermont Center for Ecostudies; Victorian Fisheries Authority; VMRC Fishing License Fund; and Wildlife Warriors Worldwide.