Ecosystem services–biodiversity relationships depend on land use type in floodplain agroecosystems
In: Land use policy: the international journal covering all aspects of land use, Band 46, S. 201-210
ISSN: 0264-8377
8 Ergebnisse
Sortierung:
In: Land use policy: the international journal covering all aspects of land use, Band 46, S. 201-210
ISSN: 0264-8377
Abstract: Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes
In: Ecology and society: E&S ; a journal of integrative science for resilience and sustainability, Band 19, Heft 1
ISSN: 1708-3087
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the "cascade" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services ; MFL was awarded a grant by the CSIC (Spanish National Research Council, www.csic.es) under the JAE‐predoc program (JAE-Pre-2010-044), co-financed by the European Social Fund (http://ec.europa.eu/esf/home.jsp). This work contributes to the OPERAs FP7-ENV-2012-two-stage-308393 and OpenNESS FP7-EC-308428 European Union's Seventh Program projects. The authors declare that no competing interests exist and that the funding sources had any involvement in study design, in data collection, analyses, and interpretation, and in the decision to submit the article
BASE
Biosphere reserves (BR) balance biodiversity protection and sustainable use through different management restrictions in three zones: core areas, buffer zones, and transition areas. Information about the links between zoning and ecosystem services (ES) is lacking, particularly in terms of the relative roles of natural contributions (ecosystem properties and functions) and anthropogenic contributions (human inputs such as technology and infrastructure) in coproducing ES. This study aimed to: (1) analyse how coproduction of four ES (crop production, grazing, timber production, recreation) differs across the three zones of BRs; and (2) understand which predictors (zoning, natural and anthropogenic contributions, other environmental characteristics) best explain ES provision within BRs. To do this, we collected spatial data on 137 terrestrial BRs in the European Union and on 16 indicators of ES coproduction. We used non-parametric pairwise Wilcoxon rank sum tests to calculate differences in indicators between zones. We used model selection and multiple linear regression to identify predictors of ES provision patterns. Anthropogenic contributions showed most differences between zones, with contributions generally increasing from buffer zones to transition areas. Natural contributions did not, on average, differ between zones, however, for recreation and crop production they decreased from buffer zones to transition areas. ES provision differed between zones only for crop production and grazing, which increased from buffer zones to transition areas. Regression analysis showed that natural contributions are the best predictors of ES provision for all four services. Our results indicate that zoning of BRs has implications for ES coproduction.
BASE
SSRN
Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers. ; The work has been supported by the DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories". S.S. was supported by the Spanish Government under Ramón y Cajal Contract RYC-2016-20604.
BASE
Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes. ; The work has been supported by the DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories". Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen and Brandenburg (according to § 72 BbgNatSchG). S.S. was supported by the Spanish Government under a Ramón y Cajal contract (RYC-2016-20604).
BASE