A Framework for Computing Trust in Mobile Ad-Hoc Networks
In: Mobile and Wireless Network Security and Privacy, S. 67-83
7 Ergebnisse
Sortierung:
In: Mobile and Wireless Network Security and Privacy, S. 67-83
International audience ; In this article, we used Wireless Sensor Network (WSN) techniques for monitoring an area under consideration, in order to diagnose its state in real time. What differentiates this type of network from the traditional computer ones is that it is composed by a large number of sensor nodes having very limited and almost nonrenewable energy. A key issue in designing such networks is energy conservation because once a sensor depletes its resources, it will be dropped from the network. This will lead to coverage hole and incomplete data arriving to the sink. Therefore, preserving the energy held by the nodes so that the network keeps running for as long as possible is a very important concern. If we achieve to improve the network lifetime and Quality of Service (QoS). Diagnosing the state of area will be more accurate for a longer time. One of the most important elements to achieve a QoS in WSN is the network coverage which is usually interpreted as how well the network can observe a given area. Obviously, if the coverage decreases over time, the diagnosis quality decreases accordingly. Various coverage strategies are thus proposed by the WSN community, in order to guarantee a certain coverage rate as long as possible, to reach a certain QoS that in turn will impact the diagnosis and prognostic quality. Various other strategies are in common use in WSN like data aggregation and scheduling, to preserve a QoS in wireless sensor networks, as long as possible. We argue that such strategies are not neutral if this network is used for prognostic and health management. Some politics may have a positive impact while other ones may blur the sensed data, like data aggregation or redundancy suppression, leading to erroneous diagnostics and/or prognostics. In this work, we will show and measure the impact of each WSN strategy on the resulting estimation of diagnostics. We emphasized several issues and studied various parameters related to these strategies that have a very important impact on the network, and therefore on data diagnostics over time. To reach this goal, to evaluate both prognostic and health management with the WSN strategies, we have used six diagnostic algorithms.
BASE
International audience ; In this article, we used Wireless Sensor Network (WSN) techniques for monitoring an area under consideration, in order to diagnose its state in real time. What differentiates this type of network from the traditional computer ones is that it is composed by a large number of sensor nodes having very limited and almost nonrenewable energy. A key issue in designing such networks is energy conservation because once a sensor depletes its resources, it will be dropped from the network. This will lead to coverage hole and incomplete data arriving to the sink. Therefore, preserving the energy held by the nodes so that the network keeps running for as long as possible is a very important concern. If we achieve to improve the network lifetime and Quality of Service (QoS). Diagnosing the state of area will be more accurate for a longer time. One of the most important elements to achieve a QoS in WSN is the network coverage which is usually interpreted as how well the network can observe a given area. Obviously, if the coverage decreases over time, the diagnosis quality decreases accordingly. Various coverage strategies are thus proposed by the WSN community, in order to guarantee a certain coverage rate as long as possible, to reach a certain QoS that in turn will impact the diagnosis and prognostic quality. Various other strategies are in common use in WSN like data aggregation and scheduling, to preserve a QoS in wireless sensor networks, as long as possible. We argue that such strategies are not neutral if this network is used for prognostic and health management. Some politics may have a positive impact while other ones may blur the sensed data, like data aggregation or redundancy suppression, leading to erroneous diagnostics and/or prognostics. In this work, we will show and measure the impact of each WSN strategy on the resulting estimation of diagnostics. We emphasized several issues and studied various parameters related to these strategies that have a very important impact on the network, ...
BASE
International audience ; In this paper, random forests are proposed for operating devices diagnostics in the presence of a variable number of features. In various contexts, like large or difficult-to-access monitored areas, wired sensor networks providing features to achieve diagnostics are either very costly to use or totally impossible to spread out. Using a wireless sensor network can solve this problem, but this latter is more subjected to flaws.Furthermore, the networks' topology often changes, leading to a variability in quality of coverage in the targeted area.Diagnostics at the sink level must take into consideration that both the number and the quality of the provided features are not constant, and that some politics like scheduling or data aggregation may be developed across the network. The aim of this article is (1) to show that random forests are relevant in this context, due to their flexibility and robustness, and (2) to provide first examples of use of this method for diagnostics based on data provided by a wireless sensor network.
BASE
International audience ; In this paper, random forests are proposed for operating devices diagnostics in the presence of a variable number of features. In various contexts, like large or difficult-to-access monitored areas, wired sensor networks providing features to achieve diagnostics are either very costly to use or totally impossible to spread out. Using a wireless sensor network can solve this problem, but this latter is more subjected to flaws.Furthermore, the networks' topology often changes, leading to a variability in quality of coverage in the targeted area.Diagnostics at the sink level must take into consideration that both the number and the quality of the provided features are not constant, and that some politics like scheduling or data aggregation may be developed across the network. The aim of this article is (1) to show that random forests are relevant in this context, due to their flexibility and robustness, and (2) to provide first examples of use of this method for diagnostics based on data provided by a wireless sensor network.
BASE
Oxford COVID-19 Database (OxCOVID19 Database) is a comprehensive source of information related to the COVID-19 pandemic. This relational database contains time-series data on epidemiology, government responses, mobility, weather and more across time and space for all countries at the national level, and for more than 50 countries at the regional level. It is curated from a variety of (wherever available) official sources. Its purpose is to facilitate the analysis of the spread of SARS-CoV-2 virus and to assess the effects of non-pharmaceutical interventions to reduce the impact of the pandemic. Our database is a freely available, daily updated tool that provides unified and granular information across geographical regions. Design type Data integration objective Measurement(s) Coronavirus infectious disease, viral epidemiology Technology type(s) Digital curation Factor types(s) Sample characteristic(s) Homo sapiens.
BASE
In: Scientific Reports, Band 11, S. 1-11
Oxford COVID-19 Database (OxCOVID19 Database) is a comprehensive source of information related to the COVID-19 pandemic. This relational database contains time-series data on epidemiology, government responses, mobility, weather and more across time and space for all countries at the national level, and for more than 50 countries at the regional level. It is curated from a variety of (wherever available) official sources. Its purpose is to facilitate the analysis of the spread of SARS-CoV-2 virus and to assess the effects of non-pharmaceutical interventions to reduce the impact of the pandemic. Our database is a freely available, daily updated tool that provides unified and granular information across geographical regions.