Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds
In 2017, we discovered quaternary i-MAX phases atomically layered solids, where M is an early transition metal, A is an A group element, and X is C-with a ((M2/3M1/32)-M-1)(2)AC chemistry, where the M-1 and M-2 atoms are in-plane ordered. Herein, we report the discovery of a class of magnetic i-MAX phases in which bilayers of a quasi-2D magnetic frustrated triangular lattice overlay a Mo honeycomb arrangement and an Al Kagome lattice. The chemistry of this family is (Mo2/3RE1/3)(2)AlC, and the rare-earth, RE, elements are Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The magnetic properties were characterized and found to display a plethora of ground states, resulting from an interplay of competing magnetic interactions in the presence of magnetocrystalline anisotropy. ; Funding Agencies|Knut and Alice Wallenberg (KAW) Foundation [KAW 2015.0043]; Swedish Research Council [642-2013-8020, 2015-00607, 621-2014-4890]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; DFG [SA 3095/2-1]; IAEC Pazy Foundation Grant; NSF [DMR-1740795]